Do fixed income securities also show asymmetric effects in conditional
second moments?
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Executive Summary

The so-called “asymmetric volatility” phenomenon is one of the empirical regularities
shown by (conditional) estimates of equity second moments. Typicaly, volatility
increases more after negative than positive return shocks of the same magnitude, and,
sometimes, it even falls subsequent to an increase in stock prices. Two explanations
have been put forth for this phenomenon: The leverage effect hypothesis, due to Black
(1976) and Christie (1982), and the volatility feedback effect proposed by Campbell
and Hentschell (1992) and extended by Wu (2000). Surprisingly, whereas there has
been a proliferation of conditional econometric models able to capture asymmetry in
volatility (see Hentscell, 1995, for a synthesis), there is a lack of conditiona
econometric specifications able to explicitly model asymmetry in covariances.
However, as argued by Kroner and Ng (1998), if expected returns on one asset change
because an asymmetric volatility effect occurs, the covariance between returns on that
asset and returns on assets which have possibly not experienced such an effect should
also change. Kroner and Ng (1998) and Bekaert and Wu (2000) are the only two
pieces of research | am aware of where multivariate asymmetric models for
conditional variances as well as covariances are developed and tested.

The need to take into account the asymmetric effects on conditional second
moments has an appealing economic justification. Assume, for instance, that a
negative return shock generates more volatility than a positive return innovation of the
same magnitude. When a traditiona Generalised Autoregressive Conditionally
Heteroskedastic (GARCH) process is used to model second moments, the conditional
volatility which occurs after a price drop will be underestimated. Similarly, the
conditional volatility which follows a price increase will be overestimated.
Consequences such as asset mis-pricing and poor in- and out-of-sample forecasts will
be, therefore, unavoidable. Accurate conditional (co)variance estimation of equities as
well as other typologies of assets, thus, is crucia for portfolio selection, risk
management, and pricing of primary and derivative securities.

While the asymmetric phenomenon in variances has been widely explored for
individual stocks, equity portfolios, and/or stock market indices, it has probably never
been tested for fixed income securities.

The main goa of this research is to consider a portfolio which includes not
only equities but also Treasury bills and government bonds, with the purpose of
documenting the asymmetry phenomenon for stocks and fixed income securities.
Moreover, including a variety of liquid investment opportunities makes the portfolio
more realistic and increases the power of the test (Cappiello, 1999).

Two multivariate GARCH processes able to capture the asymmetric effects for
both conditional variances and covariances are developed and tested. The first
parametrization, named “generalised Nelson model”, is an extension of the univariate
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Exponential GARCH of Nelson (1991). As such, it is characterised by the fact that the
terms which capture asymmetry assign the same weight to both past positive and
negative innovations. The model, though, is discarded from the analysis since it does
not fit the data well. The second specification, baptised “generalised GJR modd”, is
built on the univariate asymmetric GARCH of Glosten, Jagannathan, and Runkle
(1993) and Zakoian (1994). As such, the components which accommodate asymmetry
assign different weights to past positive and negative shocks. Contrary to the former
parameterisation, the latter seems to be well-specified. Conditional second moments
for equities as well as fixed income securities do respond asymmetrically to past
positive and/or negative shocks as evidenced by news impact curves and surfaces as
well as robust conditional moment tests (Engle and Ng, 1993, and Kroner and Ng,
1998). In particular, negative shocks have a significant larger impact on equity
volatility than positive shocks of the same magnitude, whereas the opposite occurs for
Treasury bills. As for government bonds, volatility reacts differently to past positive
and negative news.

GARCH processes are statistical models. The theoretical framework to which
the two asymmetric GARCH processes described above are applied to is the
Intertemporal Capital Asset Pricing Model (CAPM) of Merton (1973). The choice of
a dynamic rather than a static CAPM is motivated by the fact that multifactor models
seem to have supplanted single factor ones, which are usually mis-priced (see
Cochrane, 1999, and Cappiello, 1999, for further details on the topic). Typically,
single factor models link expected excess returns of an asset to the market risk
exposure. In addition to this, multifactor models consider other state variables
relevant to security performance, like oil prices, inflation, business cycle proxies,
interest rates, etc. Numerous studies have pointed out that returns and volatility of
stocks and bonds are linked to the business cycle. Most of this research finds that the
stock market falls before (or in concomitance of) economic recessions, anticipating
(or matching) a downturn in the business cycle, and rises before (or in concomitance
of) troughs, anticipating (or matching) a recovery in the economy (see Cappiello,
1999, for a survey). In the view of this relationship, the growth rate of industria
production is chosen here as a second priced factor. While in the literature one can
find several empirical investigations of single-factor multi-asset CAPMs as well as of
multi-factor single-asset CAPMSs, a conditional estimation of a multi-factor multi-
asset CAPM carried out with a GARCH-in-Mean (GARCH-M) technique represents a
novelty, attempted, until now, only by Cappiello (1999). The growth rate of industria
production turns out to be significantly priced and relevant in the determination of the
total premia required to hold risky securities. Furthermore, mgor financia market
turmoil as well as spillovers from one market to another is reflected by the time
evolution of risk premia.

Testing a CAPM implies the estimation of the prices of risk it involves. Such
an estimation, though, is one of the “unsolved” issues in empirical finance. Since
prices of risk are related to the investors' utility function, which is not observable per
se, their evolution over time is often based on some presumptions. Nevertheless, their
sign and magnitude are crucial, since they directly affect risk premia.

There is large consensus on the fact that both expected excess returns and
conditional (co)variances change through time (see the extensive surveys of
Bollerdev, Chou, and Kroner, 1992, Bera and Higgins, 1993, and Bollerdev, Engle,
and Nelson, 1994). However, first and second conditional moments do not move in a



one-to-one proportion. Therefore, in CAPM-type models the risk-return relationship
is not constant over time. With few exceptions (see, for instance, De Santis and
Gerard, 1998b, and Cappiello, 1999), the literature is silent about the possibility that
also prices of intertemporal risk vary over time. However, if it is true that the risk-
return relationship changes because both first and second moments vary over time not
in a one-to-one proportion, for the same reason intertemporal prices of risk have to be
time-varying.

Following Cappiello (1999), the prices of risk, first held constant, are next
allowed to vary according to the regime switching model of Hamilton (1988, 1989,
1990, 1994). The use of Hamilton's filter, which represents a novelty in the estimation
of prices of risk, is combined only with the generalised GJR model, due to its better
performance. Two regimes are identified, one in which the price of market risk is high
and the price of intertemporal risk is low, and one in which the reverse occurs, i.e. the
first price is high and the second low. This can be interpreted as a switch in investors
preferences whose degree of risk aversion increases in correspondence to or after
financial turmoil. However, if the specification where prices of risk can change
through time accommodates shifts in agents’ preferences, it sacrifices flexibility in
terms of GARCH specification. Thus, relevant phenomena, like the decrease in the
bond risk premia which occurred after some equity market falls, are not captured,
whereas they are when prices are held constant.
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1 Introduction: Empirical Regularities and Research Goals

The so-called “asymmetric volatility” phenomenon is one of the empirical
regularities shown by (conditional) estimates of equity second moments.
Typically, volatility increases more after negative than positive return shocks
of the same magnitude, and, sometimes, it even falls subsequent to an in-
crease in stock prices. Two explanations have been put forth for this phe-
nomenon: The leverage effect hypothesis, due to Black (1976) and Christie
(1982), and the volatility feedback effect proposed by Campbell and Hentschell
(1992) and extended by Wu (2000)'. Surprisingly, whereas there has been a
proliferation of conditional econometric models able to capture asymmetry
in volatility (see Hentscell, 1995, for a synthesis), there is a lack of con-
ditional econometric specifications able to explicitly model asymmetry in
covariances. However, as argued by Kroner and Ng (1998), if expected re-
turns on one asset change because an asymmetric volatility effect occurs,
the covariance between returns on that asset and returns on assets which
have possibly not experienced such an effect should also change. Kroner and
Ng (1998) and Bekaert and Wu (2000) are the only two pieces of research I
am aware of where multivariate asymmetric models for variances as well as
covariances are developed and tested.

The need to take into account the asymmetric effects on conditional sec-
ond moments has an appealing economic justification. Assume, for instance,
that a negative return shock generates more volatility than a positive return
innovation of the same magnitude. When a traditional Generalized Autore-
gressive Conditionally Heteroskedastic (GARCH) process is used to model
second moments, the conditional volatility which occurs after a price drop
will be underestimated. Similarly, the conditional volatility which follows a
price increase will be overestimated. Consequences such as asset mis-pricing
and poor in- and out-of-sample forecasts will be, therefore, unavoidable.
Accurate (co)variance estimations of equities as well as other typologies of
assets, thus, is crucial for portfolio selection, risk management, and pricing
of primary and derivative securities.

While the asymmetric phenomenon in variances has been widely explored
for individual stocks, equity portfolios, and/or stock market indices, it has
probably never been tested for fixed income securities.

The main goal of this research is to consider a portfolio which includes
not only equities but also Treasury bills and government bonds, with the
purpose of documenting the asymmetry phenomenon for stocks and fixed

LCampbell and Hentschell (1992) present for the first time a fully worked out formal
model on volatility feedback. However, this hypothesis can also be tracked down in,
among others, Malkiel (1979), Pindyck (1984), Poterba and Summers (1986), and French,
Schwert, and Stambaugh (1987).



income securities. Moreover, including a variety of liquid investment oppor-
tunities makes the portfolio more realistic and increases the power of the
test (Cappiello, 1999).

Two multivariate GARCH processes able to capture the asymmetric
effects for both conditional variances and covariances are developed and
tested. The first model extends the well-known univariate Exponential
GARCH (EGARCH) of Nelson (1991). As such, it is characterised by the
fact that the terms which capture asymmetry assign the same weight to
both past positive and negative innovations. One can name this specifica-
tion “generalized Nelson model”. In the spirit of Ding and Engle (1994), it is
assumed that the GARCH process is covariance stationary. This hypothesis
reduces the number of parameters to estimate and facilitates convergence.

The second specification proposed here is a modified version of the mul-
tivariate asymmetric BEKK GARCH model suggested by Kroner and Ng
(1998)2. This latter parametrization can be viewed as an extension to a
multivariate context of the popular asymmetric univariate GARCH process
of Glosten, Jagannathan, and Runkle (1993). As such, the components
which accommodate asymmetry assign different weights to past positive and
negative shocks. Two major changes to Kroner and Ng’s (1998) model are
suggested. As before, it is assumed that the process is covariance stationary,
which permits to economize considerably on the number of parameters to
estimate. Moreover, Kroner and Ng’s (1998) representation is designed for
equity portfolios only. However, Engle and Ng’s (1993) tests for asymme-
try show that fixed income securities also exhibit asymmetric effects, but
of a different type than those of equities (see Section 3 for further details).
Therefore, in the multivariate GARCH process developed here, the compo-
nent which captures asymmetry will account for the special characteristics
of each asset. In particular, equities show that negative shocks have a signif-
icant larger impact on volatility than positive shocks of the same magnitude,
whereas the opposite occurs for T-bills. As for government bonds, volatility
seems to react with a different intensity to past positive and negative shocks.
One can baptize this GARCH representation “generalized GJR model”.

The two GARCH specifications proposed here are estimated and com-
pared. The robust conditional moment tests suggested by Kroner and Ng
(1998) are applied to the chosen model to check whether it accommodates
the skewness shown by the data. While asymmetry in conditional variances
is reflected by the “news impact curves” of Engle and Ng (1993), asymmetry
in conditional covariances will be shown by the “news impact surfaces” of

2BEKK is an acronym from the initials of the researchers (Baba, Engle, Kraft, and
Kroner) who developed a multivariate symmetric GARCH parametrization widely used
in the literature (see Engle and Kroner, 1995, for further details). Kroner and Ng (1998)
have extended this model and rendered it able to capture asymmetry effects.



Kroner and Ng (1998).

GARCH processes are statistical models. The theoretical framework to
which the two asymmetric GARCH processes described above are applied
to is the Intertemporal Capital Asset Pricing Model (CAPM) of Merton
(1973). The choice of a dynamic, rather than a static, CAPM is motivated
by the fact that multifactor models seem to have supplanted single fac-
tor ones, which are usually mis-priced (see Cochrane, 1999, and Cappiello,
1999, for further details on the topic). Typically, single factor models link
expected excess returns of an asset to the market risk exposure. In addition
to this, multifactor models consider other state variables relevant to secu-
rity performance, like oil prices, inflation, business cycle proxies, interest
rates, etc. Numerous studies have pointed out that returns and volatility
of stocks and bonds are linked to the business cycle. Most of this research
finds that the stock market falls before (or in concomitance of) economic
recessions, anticipating (or matching) a downturn in the business cycle, and
rises before (or in concomitance of) troughs, anticipating (or matching) a
recovery in the economy (see Cappiello, 1999, for a survey). In the view
of this relationship, the growth rate of industrial production will be chosen
here as a second priced factor. While in the literature one can find several
empirical investigations of single-factor multi-asset CAPMs as well as of
multi-factor single-asset CAPMs, a conditional estimation of a multi-factor
multi-asset CAPM carried out with a GARCH-in-Mean (GARCH-M) tech-
nique represents a novelty, attempted, until now, only by Cappiello (1999).
Furthermore, following Cappiello (1999), the prices of risk implied by Mer-
ton’s (1973) asset pricing theory are first kept constant and then allowed to
vary according to the regime switching model of Hamilton (1988, 1989, 1990,
1994). The fact that the risk-return relationship is time-varying has been
well documented in the literature (see Cappiello, 1999, for a survey), how-
ever its precise dynamic is unknown. The use of Hamilton’s filter represents
a novelty in the estimation of prices of risk.

The paper is organized as follows. In the next sub-Section the two ex-
planations put forth to justify the asymmetric volatility phenomenon are
discussed and the literature on the topic is briefly reviewed. A synthesis
of Merton’s (1973) asset pricing theory is presented in Section 2, whereas
Section 3 describes the data employed in the analysis. Section 4 discusses
the econometric methodology, while the empirical results are presented in
Section 5. Section 6 summarizes the main results obtained and concludes
the paper.



1.1 The Asymmetric Volatility Phenomenon

Black (1976) and Christie (1982) were among the first to document that
volatility increases more after stock market falls than rises. They explained
this regularity through the financial leverage effect. More clearly, since an
unexpected drop in a stock value increases the debt-to-equity ratio of a
company, the riskiness of that stock will surge as well. The leverage effect
alone, however, seems to be too small to account for the whole asymmetric
volatility phenomenon (Black, 1976, Christie, 1982, and Schwert, 1989),
hence the need for different theories.

Campbell and Hentschell’s (1992) explanation is more complicated and
is based on a CAPM-type specification of the mean equation. Its validity
rests on the existence of time-varying risk premia, volatility persistence, and
a positive relationship between expected asset returns and risk exposure.
The fact that risk premia are time varying is well documented in the liter-
ature, as shown by the extensive surveys of Bollerslev, Chou, and Kroner
(1992), Bera and Higgins (1993), and Bollerslev, Engle, and Nelson (1994).
Volatility clustering has also been well recognized at least since the early
’60s (see, for instance, Mandelbrot, 1963, or Fama, 1965) and largely tested
by the huge literature on conditional second moments (see the above men-
tioned surveys). As for the positive risk-return relationship, the evidence is
mixed. Some research finds a significant negative or an insignificant positive
relationship, like, for instance, in French, Schwert, and Stambaugh (1987),
Campbell (1987), Turner, Startz, and Nelson (1989), Baillie and DeGennaro
(1990), Nelson (1991), Glosten, Jagannathan, and Runkle (1993), De Santis
and Imrohoglu (1997), and Bekaert and Wu (2000). Others, like Bollerslev,
Engle, and Wooldridge (1988), Harvey (1989), Campbell and Hentschell
(1992), Friedman and Kuttner (1992), Bonomo and Garcia (1997), Scruggs
(1998), and Cappiello (1999), find, instead, a positive significant relation-
ship. Without entering the issue of the sign of the risk-return relationship
and its statistical significance, for which one can refer to Cappiello (1999),
it seems that the use of multi-factor multi-asset models improves the effi-
ciency and the power of the test, making the price of market risk positive
and significant.

The volatility feedback effect distinguishes between two cases, bad and
good news (or shocks). Following Engle and Ng (1993), a piece of news,
g, is defined as the difference between the rate of return on an asset, Ry,
and its expected value conditional on the information set available at time
t—1, S1, ie. My = E(R;|S4—1); therefore e, = Ry — M;. A negative
shock indicates the arrival of bad news, while a positive shock signals that
good news is coming up. Consider, first, the bad news case. Assume that
investors expect an increase in future stock volatility. Taking Wu’s (2000)



example, this might be due to foreign financial market turmoils, which, in
turn, can spill over into domestic markets. As a consequence, investors will
be willing to sell and reluctant to buy, causing a drop in equity prices. In
other words, if volatility is expected to rise and the CAPM holds, i.e. volatil-
ity is positively priced, then investors will require a compensation in terms
of higher expected returns. The consequent fall in prices and stickiness of
volatility feedback causing further return shocks and volatility rises, which,
in turn, exacerbate the initial price drop. The process goes on until the
expected returns are sufficiently high. Suppose, in contrast, that good news
arrives to the market. In other words, assume that investors expect a de-
crease in volatility. This might again be due to a leading financial market
which surges for internal reasons: Prices rise, but the associated risk either
goes up less than proportionately or even decreases. Traders, this time, will
be willing to buy rather than sell, moving asset prices up, or, equivalently,
expected returns down. The positive shock, however, will trigger an increase
in volatility. Again, if volatility is positively priced and persistent (which,
in turn, generates an upward revision of future volatility), investors will re-
quire higher expected returns, with a consequent drop in prices. This price
decline, which tends to offset the initial price increase, generates a negative
shock and, therefore, once more an increase in volatility. Such an increase
in volatility after the arrival of good news tends to counterbalance its initial
anticipated decrease. Thus the final effect on asset volatility is uncertain.
Definitely, volatility will increase less than in the case of a negative shock
of the same magnitude. Finally, assume that no news arrives. Under this
extreme case, “the market rises because ‘no news is good news’ about future
volatility.” (Campbell and Hentschell, 1992).

As pointed out by Bekaert and Wu (2000), the leverage effect and the
feedback volatility hypothesis are not in conflict and can, in fact, be func-
tioning at the same time. When bad news arrives into the market, triggering
a decline in stock prices, the leverage effect starts to play its role, reinforcing
the volatility feedback effect. On the other hand, if good news arrives, equity
prices first go up and then down. When the whole volatility feedback mech-
anism has unfolded, prices can either increase or decrease, with ambiguous
consequences on firms’ leverage as well as on the final impact on stock return
volatility. More precisely, if prices go up, the debt-to-equity ratio decreases
and with it the associated stock risk; if prices go down, the reverse occurs:
Firms’ leverage deteriorates and the risk becomes higher. Obviously, when
assets like T-bills and/or government bonds are considered, the leverage ef-
fect does not play any role. Once again, though, the arrival of bad news is
expected to increase volatility unambiguously, whereas the arrival of good
news should produce an uncertain effect on volatility.

Finally, notice the two theories on asymmetric volatility propose a re-



versed causality. Whereas under the leverage effect hypothesis an unex-
pected price drop triggers a volatility surge, under the feedback effect as-
sumption an anticipated change in volatility causes a price decline. More-
over, Campbell and Hentschell’s (1992) explanation is more general and can
turn out to be appropriate not only for equities but also for other categories
of assets, like fixed income securities.

Wu (2000) extends Campbell and Hentschell’s (1992) asymmetric volatil-
ity model. In Campbell and Hentschell stock returns are related to dividend
volatility, rather than stock volatility, as it occurs in the classical CAPM.
Furthermore, excess returns also depend positively on dividend shocks and
negatively on the square of dividend shocks. The last two variables, which in
fact simplify into the same state variable since one is the square of the other,
proxy news about dividends and their volatility. The model captures asym-
metric conditional variances and accommodates the negative skewness and
excess kurtosis of the data. In Wu news about dividends and their volatility
are explained by two state variables instead of one. As in Campbell and
Hentschell, returns are positively linked to dividend volatility and dividend
shocks, where the latter are aimed at capturing the impact of dividend news.
The difference is in the variable that describes news about dividend volatil-
ity. In Wu this is proxyed by the stochastic component of the variance of
the dividend growth rate, which is assumed to follow a stochastic volatility
process. Estimates of the model point out that both the leverage and the
volatility feedback effects play a role in explaining asymmetric volatility. Fi-
nally, note that the rationale for considering dividends lies in the fact that
the present value of a firm depends on the stream of its dividends.

Independently of the possible explanations, there exists a vast empirical
literature that seeks to capture the asymmetric volatility phenomenon. An
incomplete list includes Black (1976), Christie (1982), French, Schwert, and
Stambaugh (1987), Engle (1990), Schwert (1990), Nelson (1991), Sentana
(1991), Campbell and Hentschell (1992), Cheung and Ng (1992), Gouriéroux
and Monfort (1992), Ding, Granger, and Engle (1993), Engle and Ng (1993),
Glosten, Jagannathan, and Runkle (1993), Rabemananjara and Zakoian
(1993), Hamilton and Susmel (1994), Zakoian (1994), Booth and Koutmos
(1995), Braun, Nelson, and Sunier (1995), Duffee (1995), Hentschell (1995),
Hamilton and Lin (1996), Koutmos (1996), Bekaert and Harvey (1997),
Booth, Martikainen, and Tse (1997), Fornari and Mele (1997), Kroner and
Ng (1998), Lubrano (1998), Scruggs (1998), Susmel (1998), Bekaert and Wu
(2000), Wu (2000), and Wu and Xiao (2000). Except for Kroner and Ng
and Bekaert and Wu, none of these studies model and test for asymmetry in
conditional covariances. This is because either only one asset is considered
and, therefore, there are no covariances to estimate, or because, even when
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multi-asset models are analyzed, covariances do not explicitly account for
any asymmetric effect.

Kroner and Ng (1998) devise a general multivariate GARCH model which
nests four popular GARCH specifications and is able to capture asymmetric
effects in variances and covariances®. Such a model, when applied to large-
and small-firm portfolios, detects significant asymmetric effects in both vari-
ances and covariances. Specifically, small-firm return shocks have negligible
effects on variances and covariances. However, large-firm negative shocks
affect volatility of both small- and large-firm returns. Moreover, bad news
about large-firm returns has a higher impact on conditional covariances be-
tween small- and large-firm returns than good news.

Bekaert and Wu (2000) develop a model able to disentangle the lever-
age effect from the volatility feedback hypothesis. Their results are based
on a conditional static CAPM estimated with an asymmetric multivariate
GARCH specification which is built up in the spirit of the BEKK model
suggested by Kroner and Ng. The analysis is applied to four assets: Three
portfolios of 5 equities each (pulled from the Nikkei 225 stocks), represent-
ing firms with low, medium, and high leverage ratios, respectively, plus a
market portfolio. The market, the high and medium leverage portfolios
show a strong asymmetric effect mainly due to market shocks. Asymmetry
for the low leverage portfolio is more modest and is essentially generated
by firm-specific shocks. The asymmetric effect in the market portfolio is
uncovered with asymmetry in conditional volatility, whereas for the high,
medium, and low leverage portfolios it is the conditional covariance asym-
metry which governs the asymmetric effects. In particular, while bad news
increases conditional covariances, good news has a mixed impact on them.

2 The Intertemporal Capital Asset Pricing Model

The asset pricing model that drives investors’ optimal portfolio choices is
assumed to be the conditional version of the Merton’s (1973) continuous-
time Intertemporal CAPM*. The main intuitions behind this theory, the
asset pricing restrictions which it implies, and the discussion on the prices
of risk are briefly reviewed here. For further details, the reader is referred
to Cappiello (1999).

While the static CAPM of Sharpe (1964), Lintner (1965), Mossin (1966),
and Black (1972) is derived under the assumption that investors live for only

3The four GARCH specifications included as special cases are the diagonal VECH
model of Bollerslev, Engle, and Wooldridge (1988), the BEKK model of Engle and Kroner
(1995), the Factor ARCH model of Engle, Ng, and Rothschild (1990), and the constant
correlation model of Bollerslev (1990).

4Long (1974) and Fama (1996) provide discrete-time versions of the model.



one period, in the real world consumption and investment decisions span
longer horizons. In such a dynamic economy, the investment opportunity set
changes over time; these changes are governed by one or more state variables,
X;, 1 =1,...,m. Risk-averse rational agents will thus anticipate and hedge
against the possibility that investment opportunities may adversely change
in the future. Because of this hedging need, the equilibrium expected returns
on securities will depend not only on “systematic” or “market” risk (as in
the traditional CAPM), but also on “intertemporal” risks. As is well known,
market risk is measured by the covariance of asset returns with the market
returns. Similarly, intertemporal risks are given by the covariance of security
returns with state variables.

In line with Merton (1973), it is assumed that both rates of returns on
assets and state variables follow a standard Brownian motion and that the
risk-averse representative agent maximizes his expected intertemporal utility
function subject to a wealth constraint:

max F ' U(C(s),s)ds (1)

Cw; t

s.t. dW = [Z w; (E(r;) —rf) + Tf‘| Wdt — Cdt + WZwiaidzi,
i=1 '

=1

where C(t) is the instantaneous consumption flow, W the wealth value, w;
the fraction of wealth invested in security ¢, E(r;) the instantaneous ex-
pected return on asset i, ry the return on the risk-free asset, o; the instanta-
neous standard deviation of asset return 7, and z; follows a standard Wiener

process’.

Let J (W (t), X(t),t) be the derived utility function of wealth, i.e. J (W, X, t) =
max E [ U (C,s)ds. The solution of the optimization problem yields the
following n + 1 first order conditions:

and
E (Rip1|Se) = Mg Y Cov (Ri i1, Rjgr, |Se) it Y ApipCov (Rigs, Xipr, [Se)
j=1 =1

(3)

®Note that in Merton’s (1973) Intertemporal CAPM, r;, r ¢t and o4, Vi, are time-
varying. As such, first and second moments are conditional on the information available
up to the time where expectations are formed. Here, however, to simplify the notation, the
time dependence of asset returns as well as that of first and second moments is omitted.
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for i = 1,...,n. Equation (2) is the familiar intertemporal envelope condi-
tion, which equates the marginal utility of current consumption to the mar-
ginal utility of wealth. Equation (3) provides the set of pricing restrictions.
All returns are now in excess of the riskless interest rate, which is indicated
by the use of upper case “R’s”. E(:|3;) is the expectation of excess re-
turns on security i, Cov (R; 11, Rji41,|S¢) and Cov (R 41, Xig41, [S¢) are,
respectively, the covariance between returns on asset ¢ and j, and the covari-
ance between returns on security ¢ and the state variable X;. Both first and
second moments are conditional on the current information set ;. w; is
the optimal wealth share of each risky asset. Ayy = —Jww, Wi/ Jw is the
Arrow-Pratt coefficient of relative risk aversion (provided that Jyw,: < 0),
where Jy; and Jyw, denote the first and second derivatives, respectively, of
J (W, X, t) with respect to W. Since \j;; measures how sensitive expected
excess returns are to changes in the market risk, it is interpreted as the
price of market risk. Similarly, since Cov (R; 11, Xit+1,|S¢) measures the
exposure of asset ¢ to the risk stemming from changes in the investment
opportunity set, Ag+ = —Jwx,+/Jws, | = 1,...,m, can be interpreted as
the price of intertemporal risk. As before, Jyx,; is the derivative of the
marginal utility of wealth with respect to the state variable X;. Both Ay,
and Ap;; VI are aggregate measures, in that they are harmonic means of the
prices of risk of each investor.

Note that the conditional multi-factor model nests the traditional CAPM
as a special case: If the marginal utility of wealth is state-independent, i.e.
Jwx,+ = 0, which happens for agents with one period lives, then Merton’s
Intertemporal CAPM reduces to the classical CAPM. The second term in
equation (3) reflects the need to hedge against adverse shifts in the invest-
ment opportunity set. A change in X; such that future consumption de-
creases given future wealth represents an “unfavorable” shift in investment
opportunities.

As long as Jy; > 0 and investors are risk-averse, i.e. Jyw; < 0, the
price of market risk must always be positive. However, the model does not
impose any sign restriction on the prices of intertemporal risk. In particu-
lar, if Jwx,+ > 0 (< 0), then Ap;; is negative (positive). When Ap;; and
Cov (R;t+1, Xi¢+1,|S¢) have the same sign, the risk premium required to
hold asset 7 increases; conversely, if the price of intertemporal risk and the
covariance between the return on security ¢ and the state variable X; have
different signs, the required total risk premium should decrease. The result
is intuitive. Let X; be a business cycle proxy, with X; decreasing during
contractions and increasing during expansions. When the economy goes
into recession, suppose that the marginal utility of wealth decreases, and
therefore Ap;; < 0. Assume also that expected returns on asset ¢ are posi-
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tively correlated with the state variable X;. In this case, the intertemporal
risk premium will turn out to be negative: Investors will require lower com-
pensation, in terms of expected returns, to hold that security. If, instead,
asset returns and the state variable show a negative correlation, then the
intertemporal risk premium will become positive. This might be the case,
at least during some periods, if, like in this research, X; is the growth rate
of industrial production. Since the latter is usually not in phase with, say,
equity returns (see, for instance, Hamilton and Lin, 1996, Chauvet and Pot-
ter, 1998, and Chauvet, 1999), it can occur that expected asset returns go
up during business cycle troughs, in anticipation of a future recovery. This
negative correlation may produce a positive intertemporal risk premium.

As with the traditional CAPM, Merton’s Intertemporal CAPM suffers
from the drawback that it is a partial equilibrium model in its nature. There-
fore, it offers little guidance in the choice of pricing factors and is silent about
the forces that determine factor risk prices. The identification of the priced
state variables is worth a separate study (see, for instance, Chen, Roll, and
Ross, 1986, and Fama, 1998). However, Merton’s model itself can give some
indication (Cochrane, 1999). In a nutshell, Merton’s intertemporal asset
pricing theory builds a bridge between consumption smoothing and asset
returns: A security should pay low average returns if it performs better
than other assets during “bad times” and relatively worse during “good
times”. “Bad times” are periods characterized by a decline in consumption.
Variables such as industrial production, oil prices, inflation, business cycle
proxies, term structure or interest rates are related to consumption and,
therefore, are good candidates for additional priced factors. To keep the
analysis empirically tractable, only the growth rate of industrial production
will be considered here.

3 Data Diagnosis

The data diagnosis carried out in this section serves two purposes: On one
hand, the variables employed in the empirical investigation are discussed.
But, more importantly, it will be shown that the considered time series
contain some of the features that GARCH processes and regime switching
models can capture, making these econometric techniques well-suited for
the analysis. Return series show little or no autocorrelation, whereas their
squared values are not serially independent, a clear indication of volatility
clustering. Besides, unconditional distributions are non-normal and, in par-
ticular, they exhibit thick tails as well as significant skewness. Furthermore,
all variables are seen to be sensitive to the sign of past shocks, a character-
istic which will be taken into account when modelling the GARCH.
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In the spirit of Bollerslev et al. (1988), a portfolio composed of three
assets will be considered: US stocks, 6-month US Treasury bills, and 10-
year US government bonds. This allows for the inclusion of a large variety
of liquid investment opportunities. All observations are from the last trading
day of the month, and cover a period from January 29 1960 to December
31 1998, for a total sample size of 468. All returns are in excess of the
1-month risk-free rate as computed by the Center for Research in Security
Prices (CRSP) at the University of Chicago. To measure total (excess) stock
returns, R the S&P 500 composite index is used, which is market-value-
weighted and includes dividends®. Yields to maturity on 6-month T-bills
are again from CRSP. Next, following Bollerslev et al. (1988), these yields
are used to compute the associated (excess) holding yields, R¥". The one-
month holding period returns for 10-year government bonds are, instead,
provided directly from CRSP, while the corresponding excess returns, R,
are computed by subtracting from the former the risk-free rate.

The market values of corporate equities are from the Flows of Funds
Accounts of the United States (Federal Reserve), while the maturity dis-
tribution of interest-bearing public debt held by private investors is taken
from the Federal Reserve Bulletin and the Treasury Bulletin. Data on the
outstanding public debt are provided in par values and, therefore, need to
be converted into market values. This is accomplished by multiplying the
different maturity categories of the debt, (i.e. within 1 year, 1 to 5 years, 5
to 10 years, and 10 years and over), by the price indices computed by Cox
(1985)7.

The second priced factor used here is the US growth rate of industrial
production (IP), computed with a total production index seasonally adjusted
(source: Federal Reserve). The series has the shortcoming that it is lagged
by about half a month with respect to the other series employed in the
analysis. This, however, should not constitute a problem due to the lower
volatility of macro-variables when compared to financial data.

Descriptive statistics for the three assets and the industrial production
growth rate are given in Table 1. Panel 1A shows that all distributions are
skewed and leptokurtik at the 1% significance level, a clear indication of
non-normality. This is confirmed by the Jarque-Bera normality test. Stock
excess returns and excess holding yields on 10-year government bonds exhibit
no autocorrelation, as indicated by the Ljung-Box statistics. As for the
excess holding yields on 6-month T-bills and the growth rate of industrial
production the test statistics indicate autocorrelation at the 1% significance

6T thank S&P - DRI in Milan, and particularly Ilaria Brioschi, who kindly provided
these data.

"The index series published in Cox (1985) ends in December 1984. I thank William
Cox from the Federal Reserve Bank of Dallas who provided me with the updated indices.

13



level. Finally, augmented Dickey-Fuller unit root tests on the three assets
plus the extra factor reject the null of non-stationarity at the 1% significance
level.

In Panel 1B autocorrelation functions are reported for lags from 1 to
12. The three assets show little serial autocorrelation, since only ps for
stocks and p; for T-bills are significantly different from zero. As for IP,
the autocorrelation functions for lags from 1 to 12 confirm the results seen
with the Ljung-Box test statistics. The series is serially autocorrelated up
to the order four, a feature that will be taken into account when modeling
its dynamic.

Unconditional correlations among assets (Panel 1C) are always signifi-
cant at the 1% level. As expected, there is a positive correlation between
stocks and bonds, on one hand, and bills and bonds, on the other. Interest-
ingly, the correlation between stocks and bills is negative. The magnitude
of the asset correlation coefficients (never above 0.3) suggest that diversi-
fication across asset classes is beneficial. Note also that all securities are
inversely correlated with the growth rate of industrial production, though
the correlation coefficient between equities and IP is not significant. As for
equities this is due to the fact that the series, though linked, are not in phase
(see, among others, Hamilton and Lin, 1996, Chauvet and Potter, 1998, and
Chauvet, 1999). On the other hand, the negative relationship between T-bill
yields and IP finds its justification in standard Keynesian models.

Cross correlations for 6 lags and leads between each pair of assets as
well as for each asset and the growth rate of industrial production generate
a total of 72 figures. Here, only cross correlations between excess stock
market returns and the other two assets plus IP are reported, not only for
6 lags and leads but also contemporaneously, for a total of 39 values. Out
of 72 non-synchronous cross correlations, only 21 (including the 14 shown
in panel 1D) turn out to be significant. This means that leading or lagging
spillovers in excess returns are quite rare, and therefore there is no need to
model them in the mean equation specifications.

While excess asset returns as well as the growth rate of industrial pro-
duction in levels show little autocorrelation, excess squared asset returns and
IP exhibit a second order dependence that a GARCH process and regime
switching models should be able to capture. As shown in Panel 1E, serial
correlation is particularly pronounced for T-bills and bonds.

Out of the 6 unconditional contemporaneous correlations between squared
time series, 3 are significant. Panel 1F indicates that volatility spillovers
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Table 1
Descriptive statistics for excess returns on the stock market,
holding yields on 6-month T-bills and 10-year government bonds,
and the growth rate of industrial production

Panel 1A: Distributional statistics

thock Rin’ll Rfond IP
Mean 0.566 0.479 0.169 0.276
Min. —21.891 —6.272 —7.615 —4.158
Max. 15.994 15.513 9.376 3.402
Std. Dev. 4.251 1.664 2.248 0.818
Skew. —0.392** 2.449** 0.334* —0.532**
Kurt. 5.142* 21.856™* 4.444** 5.992**
J-B 101.494*  7400.849**  49.350™* 196.656**
L-B;, 8.823 73.907** 16.163 129.870**
D-F —8.766"* —9.341"  —=9.756"* —T7.690**

** denotes 1% significance level.

Rgteck Rbill - Rbond " and I P represent the excess returns on the stock market, the
holding yields on 6-month T-bills and 10-year government bonds, and the growth
rate of industrial production.

Mean, min., max. and standard deviation are in %.

The significance level for skewness (skew.) and excess kurtosis (kurt.) is based
on test statistics developed by D’Agostino, Belanger and D’Agostino (1990). The
Jarque-Bera (J-B) test for normality combines excess skewness and kurtosis, and is
asymptotically distributed as x2, with m = 2 degrees of freedom. The Ljung-Box,,
(L-B,,) statistics tests the null hypothesis that all autocorrelation coefficients are
simultaneously equal to zero up to m lags; it is asymptotically distributed as X%?,'
It has been chosen m = 12 for which the critical values at 95% and 99% confidence
level are 21.026 and 26.217, respectively.

D-F is the augmented Dickey-Fuller unit root test statistics; 5% and 1% MacK-
innon critical values are -3.421 and -3.982, respectively.
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Panel 1B: Autocorrelations of excess returns and the growth rate of
ndustrial production

thock Rinll Ri)ond IP

P1 0.024 0.282** 0.087 0.344*
py | —0.029 0.041 —-0.001 0.256*
Ps 0.004 —-0.009 —-0.067 0.215**
ps | —0.002 0.065 0.041 0.166™*
Ps 0.093* 0.008 —0.009 0.048
ps | —0.072 —0.059 0.064 0.031
P12 0.022 —0.085 0.009 —0.049

*and ** denote 5% and 1% significance levels, respectively.
pi. is the autocorrelation function at lag k.

Panel 1C: Unconditional correlations of excess returns and the growth rate
of industrial production

thock Rin’ll Ri}ond IP
Rtk | 1.000 —0.141** 0.297**  —0.044
Rbill 1.000 0.166** —0.167*
Rbond 1.000 —0.160*
IP 1.000

** denote 1% significance level, respectively.
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Panel 1D: Cross correlations of excess returns between the stock market
indezx, the other two assets and the growth rate of industrial production

R?i” Rfond IP
t_¢ 0.136™ —0.040 0.131*
t_s 0.053 —0.006  0.148*
t_4 0.040 0.035 0.158*
t_s 0.054 —0.068 0.135**
t_o 0.200™  —0.049 0.049
t_1 0.183** —0.108* 0.011
to | —0.141*  0.297*  —0.044
t1 | —0.154*  0.145*  —0.062
to —0.038 0.093* —0.095*
ts 0.016 —0.001 —0.045
ty —0.056 0.034 —0.051
ts —0.083  0.114™ —-0.078
tg —0.079 0.102*  —0.079

*and ** denote 5% and 1% significance levels, respectively.

t_,, represents the cross correlation at lag m, while £,, is the cross correlation at
lead m.

Panel 1E: Autocorrelations of squared excess returns and growth rate of
ndustrial production

thock Ri’i” Rgond TP
py | 0.098* 0.304™ 0.173* 0.317*
Pa 0.082 0.101* 0.286™ 0.122*
ps | 0.097* 0.068 0.193** 0.068
P4 0.045 0.092* 0.186** 0.039
Ps 0.019  0.063  0.082 —0.021
P 0.049 0.147* 0.135* 0.041
p1o | 0.022  0.120" 0.184** 0.061

*and ** denote 5% and 1% significance levels, respectively.

pi. is the autocorrelation function at lag k.
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Panel 1F: Unconditional correlations of squared excess returns and growth
rate of industrial production

thock Ri}ill R?ond IP
th‘“k 1.000 0.122** 0.239** 0.062

RYM 1.000 0.179* 0.017
Rbord 1.000 —0.023
IP 1.000

** denotes 1% significance level.

between different financial markets are important. Therefore, a diagonal
GARCH parametrization is not fully appropriate for this sample. It will
nevertheless be used to economize parameters to estimate and facilitate con-
vergence.

Only 15 out of 72 non-contemporaneous cross correlations of the squared
time series up to 6 lags and leads turn out to be significant. Thus, volatility
spillovers at different times do not need to be modelled. Note that panel 1G
shows only cross correlations between squared stock market returns and the
remaining variables.

In addition to descriptive statistics, the diagnostic test statistics proposed
by Engle and Ng (1993) are carried out. These tests examine whether the
raw data volatility responds asymmetrically to the sign of past unconditional
shocks, without imposing any a priori volatility model. Since the growth
rate of industrial production also shows significant skewness, it is natural
to apply the Engle and Ng (1993) test statistics to that time series as well.
Define v;; = R;+ — p;, @ = stock, bill, bond, where R;; is the (excess) return
on asset 4, and p,; its unconditional mean. When the test is conducted
on IP, one has vip; = IP, — p;p. The square of v;; can be considered a
rough measure of the unconditional volatility. Thereafter, run the following
regression:

Uzt = aiotand (vig—1 < 0)+ad (V-1 < 0)v_1+aiz] (Vig—1 > 0)vi_1+e;, Vi,
(4)

where o, a1, (o, and a3, are constant coefficients; I () denotes the indica-

tor function which is equal to one if the argument is true and zero otherwise;

and, finally, e;; is the residual. The t-ratios for a1, a;2, and a3 are the sign

bias, the negative size bias, and the positive size bias test statistics, respec-

tively. The sign bias test detects whether positive and negative (return)
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Panel 1G: Cross correlations of squared excess returns between the stock
market index, the other two assets and the growth rate of industrial
production

Ri’i” R?ond TP

l_¢ 0.001 0.053 0.041
t_s 0.008 —0.028 0.086
t_4 0.068 —0.027 0.080
t_3 0.017  0.075 0.176*
t_o 0.097  0.048 0.193*
1 0.070 0.036 0.084
to | 0.122* 0.239* 0.062
1 0.029 0.076 0.019
to 0.024 0.041 —0.002
ts | —0.001 0.037 —0.024
t4 0.012 0.029 —-0.044
t5 0.027 0.008 —0.030
t¢ | —0.018 0.052 0.021

** denotes 1% significance level.
t_n represents the cross correlation at lag m, while t,, is the cross correlation at
lead m.
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Table 2
Diagnostic tests for volatility asymmetry of excess returns on the
stock market, holding yields on 6-month T-bills, 10-year
government bonds, and the growth rate of industrial production

The estimated model is:

2 .
viy = ciotaa ] (Vi1 < 0)+aul (Vi1 < 0) v 1+l (Vig—1 > 0)vig1+ey, Vi

Qg o1 Qo Q3 LM p-value
| BT LU T
N N R
A - B
|l b s 0 g

Rgtock, Ri’i”, Ri”md, and [P represent the excess returns on the stock market,
the holding yields on 6-month T-bills and 10-year government bonds, and the
industrial production growth rate.

Standard errors are shown in parentheses.

The t-ratios for ay1, a0, and ay3 are the sign bias, the negative size bias, and the
positive size bias test statistics, respectively (Engle and Ng, 1993).

The Lagrange Multiplier statistic (LM) tests the null Hy : a1 = o = 3 =
0. Tt is asymptotically distributed as a X,Qn with m = 3 degrees of freedom for
which the critical values at 95% and 99% confidence level are 7.815 and 11.345,
respectively.

shocks have an effect on vit. The negative size bias test investigates the ef-
fect of large and small negative (return) shocks on vzt. Finally, the positive
size bias test focuses on the impacts that large and small positive (return)
shocks may have on vzt. A Lagrange Multiplier (LM) joint test for the null
Hy @ a;1 = ajp = a3 = 0 can also be computed. Such test statistics is
equal to T' (the sample size) times the R-squared from the regression. The
LM test statistic has the standard limiting distribution and, in particular,
is distributed as a chi-square with three degrees of freedom. Table 2 reports
parameter estimates from equation (4) as well as the LM test statistic for
each asset and the additional pricing factor.

Not surprisingly, when analyzing stocks, as is the only significant para-
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meter at 5% level, suggesting that the volatility of equity returns is sensitive
to the negative rather than the positive sign of past shocks. The opposite
occurs for T-bills: ag is the only significant parameter in that regression, in-
dicating the relative importance of positive rather than negative past news.
As for government bonds, both ay and a3 are significant at 5% level, sug-
gesting that negative and positive innovations have a different impact on the
volatility of that asset.

The fact that positive past innovations have, in relative terms, a negli-
gible impact on equity volatility, being the probability of rejecting the null
Hy : a3 = 0 equal to 0.31%, can be explained by the feedback volatility
hypothesis together with the leverage effect. The combination of the two
mechanisms attributes more importance to negative than to positive shocks
of the same magnitude. Even though the feedback volatility hypothesis
probably does not provide a satisfactory explanation for the asymmetric
volatility phenomenon of T-bills and government bonds, it offers, neverthe-
less, a theoretical underpinning. As for T-bills, the probability of rejecting
the null Hy : ap = 0 is equal to 94.24%. Therefore, even though oy turns
out to be consistent with zero at statistical conventional levels, the volatility
feedback hypothesis plays its role, since T-bill current volatility exhibits a
certain sensitivity to negative past shocks. Why positive innovations are
more important than negative remains to be investigated and more satis-
factory theoretical foundations are called for. As for government bonds,
since the null hypothesis Hy : as = 0 is rejected with a probability equal to
97.74%, negative past innovations increase current volatility. In addition to
that, since no leverage effect can be advocated for this security, anticipated
positive shocks raise volatility as well, but with a different weight.

The growth rate of industrial production shows a behavior similar to
bonds, in that both ay and as are significant at 5% level. The asymmetric
volatility effect for this series does not find an appropriate justification in
the theories put forth by Black (1976) and Christie (1982) and Campbell
and Hentschell (1992) and, for the time being, can be considered a mere
statistical phenomenon.

The LM test statistics rejects the null hypothesis Hy : a1 = a0 = ayz =
0 for the three securities as well as the industrial production growth rate
at 1% significance level, indicating that volatility responds asymmetrically
to past news. These results are consistent with the fact that asset returns
as well as the state variable are significantly skewed: The variance of a dis-
tribution which is not centered is different from the variance of a symmet-
rical distribution, and, in particular, can respond differently to the sign of
past innovations. Harvey and Siddique (1999) estimate a conditional mean
equation for stock returns including an autoregressive conditional skewness
function through a noncentral ¢-distribution. Interestingly, the inclusion of
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skewness substantially reduces the asymmetry in conditional variance, indi-
cating the existence of a link between skewness and asymmetric volatility.
More importantly, the Engle and Ng (1993) test statistics point out that the
asymmetric effect on volatility is not the same for each asset, a feature that
has to be taken into account when modeling the time evolution of conditional
second moments.

4  Empirical Methods

Under the assumption that investors are rational, the set of pricing restric-
tions (3) provides the following statistical model:

n m
Rir = Mg D hyewss + Y Apndhngiern + €apn, (5)

j=1 =1
where Ry represents the n x 1 vector of security excess returns, h;; 4
the n x 1 vector of conditional variance/covariances of each asset with it-
self/others, hy, ;11 the n x 1 vector of conditional covariances of each secu-
rity with the state variables, and €,s,.1 the n x 1 vector of conditional error
terms. As before, Ay, and A\, are, respectively, the prices of market and
intertemporal risk, while w;; is the optimal wealth share of each risky asset.
The theoretical model does not impose any restriction on the parame-
trization of the dynamic of the additional factors. Therefore one can choose

a functional form of the kind:

Fi1 =Ky, +€eriy1, (6)

where F;.; is the m x 1 vector of priced factors, y; is a k x 1 vector of
predetermined variables which have predictive power with respect to factors,
K is the associated m x k matrix of parameters, and €z, is the m x 1 vector
of conditional error terms.

To accommodate the non-normality typical of financial time series, and
in particular the leptokurtosis, the (n +m) x 1 disturbance vector, ;.1 =
lEmi1 € F¢+1]/ , is assumed to be conditionally Student ¢-distributed (Boller-
slev, 1987)

€1 |t ~ Student —t (0, Hyyq,v),

where v is the parameter indicating the degrees of freedom. H,,; is the
(n4+m) x (n + m) conditional covariance matrix of asset returns and priced
factors. Note that h;.q1, j = 1,...,n, and h,4411, [ = 1,...,m, are, re-
spectively, the first n and the last m columns of H; ;. Economic theory does
not suggest any hypothesis about conditional second moment evolution, nor
about their relationship with economic fundamentals. Therefore, one has
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to rely on ad hoc assumptions and on specific statistical models. GARCH
processes are among the most widely used parametrizations to model condi-
tional second moments. It is assumed that the conditional covariance matrix
follows a multivariate GARCH(1,1) process, according to Engle and Kroner
(1995):

Ht+1 = V,V + A/€t€;A + B/HtB, (7)

where V, A, and B are (n +m) X (n+ m) matrices of unknown parame-
ters®. If, for simplicity, A and B are assumed to be diagonal, the process
(7) becomes

H;,; = V'V +aa’ ® e, + bb © Hy, (8)

where a and b are (n+m) x 1 vectors of parameters which include the
diagonal elements of A and B, respectively, while ® denotes the Hadamard
(element by element) matrix product. The number of unknown parameters
in equation (8) is (n+m) [(n +m) + 5] /2, which can easily become pro-
hibitive during the estimation procedure if the number of assets and /or fac-
tors is large. Moreover, a simpler GARCH parametrization would facilitate
convergence. Following Ding and Engle (1994), an even more parsimonious
representation is therefore adopted. Under the assumption of covariance
stationarity, the unconditional covariance matrix of the residuals implied by
equation (8) will be Hy = V'V ©® (11’ — aa’ — bb’)_l. Therefore, system
(8) reduces to

H;,1 = Hy® (11’ —aa’ — bb’) + aa’ ® &;¢} + bb’ ©® H, (9)

where 1 represents the unit vector. Hy, though unknown, can be evaluated
recursively during the optimization procedure, according to the methodology
suggested by De Santis and Gerard (1997, 1998a)”. With this parametriza-
tion, the number of unknown parameters reduces to (n+m) x 2, greatly
facilitating the estimation of non-linear models.

The GARCH process represented in equation (9) is symmetric: It does
not accommodate the fact that the volatility of asset returns and the growth
rate of industrial production is sensitive to the sign of past innovations. How-
ever, as reflected by the Engle and Ng’s (1993) tests statistics (see Section
3), volatility responds asymmetrically to negative and/or positive shocks.
Therefore, conditional second moments should be modeled in such a way

8Note that V is an upper triangular matrix. Therefore it only contains
[(n +m) (n+m + 1)] /2 unknown parameters. V'V is, in fact, a Cholesky decomposition
of the GARCH constant term, which ensures the positive definiteness of the process.

9At the first iteration Hy is set equal to the unconditional covariance matrix. Then it
is updated at the end of each iteration.
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that takes into account the asymmetric volatility effect. The next Section
discusses how to modify the multivariate GARCH process described by equa-
tion (9) in order to capture asymmetry in both conditional variances and
covariances.

4.1 Modeling the Asymmetric Effects in Multivariate GARCH
Processes

As pointed out, among others, by Nelson (1991), a GARCH process of the
kind represented by equation (9) suffers from an important limitation. Al-
though it elegantly captures volatility clustering, it does not allow negative
and positive past shocks to have a different effect on future conditional sec-
ond moments. In other words, only the magnitude, not the sign of lagged
innovations determines conditional variances and covariances. Therefore a
model that captures the asymmetric responses of conditional second mo-
ments should be preferable for asset pricing applications. To better see
this, consider, for a moment, a portfolio made of equities only and think,
for instance, of a large price drop, like the one that happened in October
1987. If a negative return innovation generates more volatility than a posi-
tive return innovation of the same magnitude, a symmetric GARCH process
underestimates the conditional volatility which occurs after bad news. Sim-
ilarly, it overestimates the conditional volatility which follows good news.
In CAPM-type models, conditional volatility directly affects risk premia
investors require to hold risky assets. But the premia forecast by the tradi-
tional GARCH differ from those implied by an asymmetric GARCH, with a
consequence of probable asset mis-pricing.

The GARCH literature has devised numerous ways to model asymme-
try, particularly in univariate contexts. Examples are given by the quadratic
GARCH of Engle (1990) and Sentana (1991), the EGARCH model intro-
duced by Nelson (1991), the qualitative threshold ARCH of Gouriéroux and
Monfort (1992), the asymmetric power ARCH of Ding, Granger, and Engle
(1993), the Glosten-Jagannathan-Runkle (1993) (GJR) GARCH, the non-
linear asymmetric GARCH of Engle and Ng (1993), the threshold GARCH of
Zakoian (1994) thereafter extended by Rabemananjara and Zakoian (1993)*,
the volatility-switching ARCH proposed by Fornari and Mele (1997), the
smooth transition GARCH of Lubrano (1998), and the EGARCH of Wu
and Xiao (2000), where the impact of return shocks on conditional volatil-
ity is estimated nonparametrically. Probably, the most popular asymmetric

10The first version of Zakoian’s threshold GARCH appeared in a working paper
(CREST, INSEE) dated 1990. This explains why the extension of the model due to
Rabemananjara and Zakoian (1993) has an earlier date than the original model published
only in 1994.
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univariate GARCH representations are the EGARCH of Nelson and the
GJR GARCH of Glosten, Jagannathan, and Runkle. These two GARCH
processes are extended here to a multivariate context starting from the para-
metrization given by (9). However, to begin with, it is convenient to first
briefly discuss the univariate specifications for both the EGARCH and the
GJR models.

4.1.1 The Generalized Nelson Model

Let u;r 1 = v/hs 1001 be a model’s prediction error, where v, 1 is 7.1.d. with
zero mean and unit variance. Nelson’s (1991) univariate EGARCH process
for the evolution of the conditional variance of w1, hy11, is as follows:

[e'¢) q
Inhi = Oéo+2 a; {7 [|ve1—i| — B |vesi—i| + CUt+1—i]}+Z Binhij, ar = 1.

i=1 j=1
(10)

Nelson’s specification has at least two advantages over a standard GARCH
model. First, since equation (10) describes the log of h;, 1, the variance itself
is always positive, without imposing any positivity constraint on the parame-
ters. Second, the EGARCH parametrization accommodates the asymmetric
relation between asset returns and volatility, since the conditional variance
depends on both the size and the sign of v, ;. To better see that, assume
that the GARCH process (10) is of order (1, 1). Similarly to the traditional
GARCH representation, the term -y [|vs] — E |v¢|] captures the magnitude
effect. This becomes clear if one assumes that v > 0 and { = 0. In this case
the v [|vy| — E |v¢|] term raises In h; 1 when the magnitude of market move-
ments is large whereas lowers it when it is small. Moreover, when ¢ = 0, the
conditional volatility responds symmetrically to the lagged return innova-
tions. In particular, a positive surprise (which occurs when the magnitude
of vyyq is larger than zero) has the same effect on volatility than a negative
surprise of the same magnitude (which happens if the reverse occurs, i.e.
Upy1 is smaller than zero). The term (v, allows the conditional variance
to respond asymmetrically to the sign of lagged return innovations. To see
that, suppose that v = 0 and ¢ < 0. In this case a positive return innovation
actually decreases volatility, while a negative return innovation increases it.
The GARCH model described in (10) can be extended to a multivariate
context, when, for instance, a system of mean equations has to be estimated
and the conditional covariance matrix of the error term vector is supposed
to follow an asymmetric GARCH process. In the literature there exist al-
ready examples of EGARCH applied to systems of equations: See, among
the others, Braun, Nelson, and Sunier (1995), Koutmos and Booth (1995),
Koutmos (1996), Booth, Martikainen, and Tse (1997), and Scruggs (1998).
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In all these studies the conditional variances follow equations of the type
described in (10), but the conditional covariances do not explicitly account
for any asymmetric effect. Apart from the research of Braun et al., con-
ditional covariances, h;;:1, are modeled in the spirit of Bollerslev (1990).
That is, hijiy1 = pmihi’tﬂd hji41, Vi and j, where pi; 18 the conditional
correlation coefficient between asset ¢ and j and it is assumed to be constant
over the sample period, while ]/hi7t+1 and |/h;y1 are, respectively, the con-
ditional standard deviations of security ¢+ and j. Braun et al., who analyze
a portfolio of two assets, model the second moment matrix by splitting it
into three pieces: The two conditional variances associated with each secu-
rity and the conditional beta. Also in this case conditional covariances do
not exhibit explicit asymmetric effects. However, as pointed out by Kroner
and Ng (1998), if, due to the asymmetric volatility effect, expected returns
on one asset change, the covariance between returns on that asset and re-
turns on assets which have possibly not experienced such an effect should
also change. Therefore, the following multivariate GARCH specification is
proposed, with the scope of explicitly capturing asymmetric comovements
of asset returns:

H;, = Hy® (11" — aa’ — bb) +aa’ O (vi) 1 (v) + (¢’ ©vv; +bb O Hy,

(11)
The process described in (11), which one can name “generalized Nelson mod-
el”, is built on the symmetric GARCH parametrization represented in (9).
Like the term v [|vs| — E |v|] in equation (10), the term aa’ ® 1 (v;) 7 (vy)'
accommodates the size effect. In particular n (v;) = |vy| — E |vy|, where v,
is an (n 4+ m) x 1 vector, whose generic element is v;; = €;./\/hi+ Vi, i.e.
the ith conditional standardized innovation. The term (¢’ ® v;v}, which in
the univariate representation simplifies to (v, accommodates the sign effect
for both conditional variances and covariances. The matrix (¢’ = ,[Cij} is
defined as follows: (; = (; Vi, and (;; = (;¢; Vi # j. Similarly, for the
matrix v,V = [v;;¢] the elements that lie on the main diagonal are defined
as v;i+ = Uiz Vi, while the elements off the main diagonal are v;;; = v;vj+,
Vi # j. The (i, j)th element of the H;;; matrix described in (11) is:

Riigt1 = hiio (1 — aza; — bib;) + a;a;m (vig) 1 (Vig) + CUig + bibihi g Y,

hij,t+1 = hij,O (1 — ;a5 — bibj)+aiaj77 (Ui,t> n (Uj,t)+CiCjUi,tUj,t+bibjhij,t Vi 7’é ]

This parametrization allows to capture the asymmetric effect on condi-
tional variances and covariances. Assume, for instance, that (; < 0 (> 0) . If,
ceteris paribus, v;; < 0, volatility will increase (decrease), while if v;; > 0,
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volatility will decrease (increase). The sign effect on each covariance will be
given by CiC ViV, Vi #J-

The last issue to discuss concerns the assumption about the distribution
taken by €;,1, since the value assumed by E |v,;| will depend on this choice.
Nelson (1991) proposed the use of the Generalized Error Distribution (GED).
As mentioned above, residuals here are assumed to be conditionally Student
t-distributed. Therefore E |v;,| = (2/7)"* [ (v — 1) /2] /T (v/2) Vi, where,
as before, I' (+) is the gamma function and v the degrees of freedom parame-
ter!!

4.1.2 The Generalized GJR Model

The GJR univariate asymmetric GARCH model has a simpler structure than
Nelson representation. As before, let w1 = /hs410:41 be a model’s predic-
tion error, where vy, is ¢.7.d. with zero mean and unit variance. The GJR
parametrization, originally designed to estimate the conditional variance of
equities, is formulated as follows:

p q

hiy1 = a0+ [aiuf—‘rl—z’ + Gl (ut1- < 0) U?ﬂ—z} +> Bl (12)

i=1 j=1

where, as before, I (-) is the indicator function. The only difference with
a traditional GARCH is the inclusion of the term (I (up11—; < 0)uiq_;,
i = 1,...,p. This term accommodates the asymmetric volatility effect.
Assume that ¢; > 0 (< 0). When usy1; < 0, I(-) = 1 and volatility
actually goes up (down). Conditional volatility, instead, does not change
for positive innovations, since I () = 0. In a comparison study for daily
Japanese TOPIX data, Engle and Ng (1993) find that, of several variance
parametric models with the inclusion of the Nelson’s (1991) EGARCH, the
GJR is the best at parsimoniously capturing the asymmetric effect.

A multivariate version of the univariate GJR parametrization is due to
Kroner and Ng (1998). In the spirit of that research, the process (9) is
modified in order to capture asymmetry in second moments and the following
representation is suggested:

Ht+1 = HO ® (11/ — aa’ — bb/) -+ aa’ ® EtE:f + CCI ©O) 77{'7;; + bb, ® Ht, (13)

The process described in (13), which one can baptize “generalized GJR
model”, presents an additional term, (¢’ ® n,n}, with respect to the repre-
sentation given by (9). By construction process (13) nests (9) as a special

HUNotice that as the degrees of freedom parameter v goes to infinity, a Student ¢-

distribution approaches a standard normal distribution. In this case F |v; | = (2 /7‘(‘)1/ 2
Vi (Hamilton, 1994).
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case: When all elements of the matrix (¢’ are set equal to zero, equation
(13) reduces to (9). The term (¢ ©® n,m, accommodates the asymmetric
responses of variances and covariances to past shocks. (¢’ = [C ij] = (;(; Vi
and j is a (n +m) x (n 4+ m) matrix of parameters'?>. n, is a (n+m) x 1
vector. In the case analyzed here its dimension reduces to 4 x 1 and each of
the elements it contains is modeled as follows:

nstock,t =—1I (EStock,t < O) Estock,t (14)
Moitn,e = I (€bz‘ll,t > 0) Ebill,t5 (15)
n — Cbondl * Ebond,t if Ebond,t >0 (16)
bondht _Cbomﬂ * Ebond, t if Ebond,t S 0’
i Crpr-€rpe iempy >0 (17)
et —Cypo  €1Py iferpe <0 7

This parametrization finds its rationale in the Engle and Ng (1993) tests
presented in Section 3 and in the functional form of the (i, j)th element of
the H;,; matrix described in (13):

hijir1 = hijo (1 — asa; — biby) + asajei e + CCimi My + bibjhije Vi and j.

In particular, when modeling 7, ;, Vi, only the effects of past positive and
negative shocks which have an associated parameter significant at maximum
5% level, as computed with the Engle and Ng’s (1993) test statistics, are
taken into account. Stock volatility seems to increase more after negative
than positive past shocks. Therefore, Citacknitwk’t will be positive any time
Estock,t < 0 and zero otherwise, independently of the sign attached to (.-
As for the T-bill volatility, it seems to react more after positive past inno-
vations: (iilm%ﬂl’t will be positive any time epnqgr > 0 and zero otherwise.
Government bond volatility, instead, seems to respond differently to positive
and negative past surprises. The two parameters (;,,s; and .4 capture
the different responses to positive and negative past innovations. Finally,
the volatility of the industrial production growth rate shows the same fea-
ture of the variance of government bonds, thus it has the same specification.
In order to avoid overparametrization, in the matrix ¢¢’, (;, for i = bond
and TP, is set equal to one and, therefore, only ¢; and (, are estimated!?.

121 ike matrices aa’ and bb’, the matrix (¢’ can be thought of as the result of the
product of a column times a row vector {. Such a vector includes the diagonal elements
of an underlying Z matrix of dimension (n+m) x (n+m). As such the ¢¢’ matrix
contains only n 4+ m unknown parameters.

13The parametrization suggested in equations (14) and (15) is similar to that of Glosten,
Jagannathan, and Runkle (1993), whereas equations (16) and (17) can be seen as a
generalization of the Threshold GARCH proposed by Zakoian (1994).
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4.1.3 A Comparison between the Generalized Nelson and GJR Models

The generalized Nelson model has the advantage that its structure does not
depend on the particular variable considered in the analysis. The generalized
GJR specification, instead, has to take into account how volatility of a given
variable responds to past positive or negative shocks, and, as such, relies on
test statistics. If, for instance, one imposed 7.1+ = I (€stock,t > 0) Estock,t
equity conditional volatility would increase more to past positive than neg-
ative innovations of the same magnitude, a possibility which is probably
wrong. Therefore, the strategy suggested to have the best fit of the data is
to first carry out the Engle and Ng (1993) tests on each of the analyzed vari-
ables and then to model each element of the vector 1, accordingly. Moreover,
the generalized Nelson model does not impose the direction in which condi-
tional volatility has to go after a shock, whereas the generalized GJR model
does. Suppose (; turns out to be negative and, for the sake of simplicity,
consider only equities. When the generalized Nelson model is employed, the
variance will increase after a negative innovation and decrease after a posi-
tive shock. When, instead, the GJR model is used, since the Engle and Ng’s
(1993) test indicates that volatility rises significantly after bad news but it
does not react when good news occurs, the possibility that positive shocks
can even decrease the conditional variance will be excluded. However, such
a possibility can arise and be significant. In other words, one could question
the power of Engle and Ng’s (1993) test statistics, an analysis which would
go beyond the scope of this paper. The disadvantage of the generalized Nel-
son model is that it does not accommodate for the fact that volatility can
increase to both positive and negative past shocks, though with different
intensities. This can be captured with the generalized GJR model, as shown
by the parametrization proposed in equations (16) and (17).

Finally, notice that, in general, univariate GARCH representations need
some non-negativity requirements on the parameters of the process to ensure
a positive conditional variance. As seen before, Nelson’s (1991) specification
does not require to impose any constraint on the GARCH parameters since
the variance itself will be positive regardless of the sign of the coefficients
involved. In a multivariate context, it is required that the conditional co-
variance matrix be positive definite. A sufficient condition to ensure posi-
tive definiteness for the symmetric Ding-Engle representation (9) is that the
three addenda Hy ® (11’ — aa’ — bb’) , aa’ ® €€}, and bb’ ® H; are positive
definite. The last two components are positive definite by construction (see
Ding and Engle, 1994, for a proof). As for the first one, it is positive definite
if both Hy and (11’ — aa’ — bb') are positive definite. Hy is so by definition,
since it is set equal to the unconditional covariance matrix at the beginning
of the estimation procedure and then updated at the end of each iteration.
The non-singularity of (11’ — aa’ — bb'), instead, is not guaranteed in the
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estimation procedure. Both the generalized Nelson and GJR models, which
are built on the process (9), share the same limitation. In practice, though,
the conditions under which the matrix (11’ — aa’ — bb’) does not have full
rank are quite restrictive, and therefore, one can use the Ding-Engle repre-
sentation. In addition to that, however, the generalized Nelson model may
show another potential problem. The way in which the term {¢' ® vv) is
parametrized might be a further source of non-positive definiteness: Its off-
diagonal elements can turn out to be too big relative to the diagonal terms,
thus causing ¢’ ® v;v} to be nonpositive definite. In the generalized GJR
model, instead, the component aimed at capturing the asymmetric effects,
¢¢' © mym;, is again positive definite by construction. Because of that, the
latter specification can turn out to be preferred to the former.

4.2  The Switching Prices of Risk

Merton’s (1973) Intertemporal CAPM will first be estimated assuming that
the prices of market and intertemporal risk are constant. Next, prices will
be allowed to vary over time, but take on only two values. In particular,
the coefficient of risk aversion will be equal to either A\j;; or Ay, while the
prices of intertemporal risk Apy; or Mgy, VI. Let SM € {1,2} and SF" € {1,2}
represent the state of investors’ preferences at time ¢, with respect to the
price of market and intertemporal risk, respectively. At each point in time
the price of market risk is

{ A, if SM =1,

Amt =

Mara, HESM —2, (18)

while the prices of intertemporal risk are

App, if SF1 =2,

The time evolution of the unobserved state variable S}, u = M, Fl, VI,
is assumed to follow a first-order Markov chain:

; Fl _
Aplt:{ w5 =1y (19)

P(Sy=1|S¢,=1)=p"

P(SH—2|sm  —1)=1—p"

(tu - ) P u=M L (20)
P(StZQSt—lz ):q

P(Sy=1|5,=2)=1-¢"

where p* and ¢" represent the conditional probabilities of remaining in the
past state. Therefore, 1 — p* and 1 — ¢*“ are the conditional probabilities of
switching between states.

To simplify the estimation, only one priced factor is chosen, in addition
to the market risk. Therefore, together with the coefficient of risk aversion,
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there is only one price of intertemporal risk to consider. As a consequence,
there will be only two unobserved state variables, SM and S}, which will
govern the time evolution of \y;; and Agg, Vi, respectively. In the spirit of
Hamilton and Lin (1996) and Susmel (1998), three possible cases arise from
the combination of SM and S}. Case i): Independent states, i.e. shifts
in the price of market risk are completely unrelated to the factors driving
the price of intertemporal risk, therefore SM is independent of S¥ Vt and 7.
Case ii): Common states, i.e. shifts in the price of market and intertemporal
risk are determined by the same factors, thus SM = Sf' = S, Vt. Case iii):
Related States, i.e. forces that govern the market and intertemporal risk
are the same, but are not in phase. Two sub-cases need to be considered:
iiia) The coefficient of risk aversion changes before the intertemporal price
of risk, i.e. the price of market risk leads the other price, thus S/ = SM,
Vt. And iiib) The causality is reversed, namely SM = S}, V!4,

Cappiello (1999) estimates a two-factor trivariate Intertemporal CAPM
using the same assets employed here, but a different state variable to hedge
against adverse changes in the investment opportunity set'®. That research
finds that the model with common states outperforms the others in terms
of forecasting. On the grounds of those results, even if here the second
priced factor is different, only the common state case is considered. Indeed,
since Ay and A\p; depend on first and second derivatives of the same derived
utility function (see Section 2), it is plausible that their evolution over time
is governed by the same latent variable.

When case ii) is analyzed, the transition probabilities are given by equa-
tion (20), where, since u = M = F, the superscript can be dropped out. The
associated switching probability matrix and mean equation are, respectively,

p l—g¢q
P= : 21
l I-p ¢ ] 21)
and
n
Riyr = Aus, ) hjenwss + Ars,hoii + €nps (22)
j=1

In Hamilton’s (1988, 1989, 1990, 1994) original formulation of regime
switching models the transition probabilities are constant over time. This

141n previous research myself and Tom Fearnley have developed a program to estimate
a conditional static (only the market exposure is considered) single-asset CAPM in which
the price of market risk is modelled according to Hamilton’s (1988, 1989, 1990, 1994)
filter. Given the simple nature of that problem, only one latent variable is analyzed and
no need for several model specifications is there required.

15The state variable employed by Cappiello (1999) is the default premium, defined as
the return on a portfolio of low-grade corporate bonds less the return on a portfolio of
long-term government bonds.

31



assumption is first retained and then relaxed later on. Recent studies sug-
gest that keeping the switching probabilities constant may be an oversim-
plification and make them dependent upon some conditioning information
variables!S:

pr =P (Zt—l)

g =@ (Zt—l) ’
where Z;_; is a vector of predetermined variables which can affect the state
transition probabilities. ® (-) can be any function whose values lie between
zero and one. The functions typically used in the literature are the logistic
or the cumulative normal density function. Here it is considered the latter
because it makes the probabilities monotonic in the instruments, thus facil-
itating the interpretation of the parameters. As shown in Cappiello (1999),
investors exhibit a higher (lower) degree of risk aversion in correspondence
of financial turmoils (quiet periods). Therefore, it is preferable to choose
predetermined variables which can contain information on the state of fi-
nancial markets. Variables such as lagged interest rates, term premium, or
dividend yields can be good candidates. A raise in the interest rate, for
instance, usually has a negative impact on stock markets. Thus it should
increase the likelihood of a switch to the high-risk aversion regime.

Thanks to the transition probabilities it is possible to determine the ez

ante probabilities, conditional on information available up to time ¢:

(23)

P(St+1:k|%t;9) :ZP(St—H:k|St:j)P(St:j|%t§0)7 k=1,2,

7j=1

(24)
where 0 is the vector of unknown parameters and P (S; = j |S¢; €) represents
the filter probability, which indicates the state of the economy at time ¢. By
Bayes’ rule, the latter can be written as

f(Gt ‘St = k,%t—l;e)P(St =k ‘%t—l;o)
2
Zl f(Gt ‘St =17, %t—l;e) P(St :j‘gt—lée)
J:

P(St:k|gt,0): ,k:1,2.

(25)
where f(G¢|S; = k,3¢-1;0) is the likelihood function for the data condi-
tional on the information set and the latent state variable, and G; = [Ry Ft]’
is the vector of asset returns and factors. While ex ante probabilities are
commonly used for forecasting, filter probabilities give inference about the

16See, for instance, Ghysels (1993), Diebold, Lee and Weinbach (1994), Filardo (1994),
Durland and McCurdy (1994), Bekaert and Harvey (1995), Gray (1996), Dahlquist and
Gray (1998), and Perez-Quiros and Timmerman (1999).
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regime in which the economy is. Given the conditional density function
and initial starting values for the ez ante probabilities, equations (24) and
(25) can be iterated recursively to compute the state probabilities and the
parameters of the likelihood function.

The conditional density function is assumed to follow a multivariate nor-
malized Student ¢-distribution within each state (see Johnson and Kotz,
1972, or Fang, Kotz, and Ng, 1990):

f(Gt |St =k, %t—l;e) =

v+

£, (0,5, =k)H, (0) "' €,(0,S,=k)]
v—2

" ()

(32 @)

i

N|=

(26)

where g = n +m and I'(-) is the gamma distribution. The parameters of
the model, including v, are estimated by maximizing the following likelihood
function with respect to :

T
L(G¢[Se-1;0) =) _ In¢ (G [Si-1;0), (27)
t=1

where the density function ¢ (-) is a weighted average of the two state-
dependent densities:

¢ (G [S84-150) :Z F(Ge|S: =7,S8¢-1;0) P (S; = j|S¢-1;0) . (28)

j=1
The weights are determined by the ex ante probabilities (equation (24)).

The last issue to discuss concerns the presence of switching parameters
in the asset mean equations, i.e. Ay, and Apg,. Since the model is esti-
mated with a GARCH-in-Mean technique, switching prices of risk cause the
GARCH process to be a function of the entire history of the state variables.
Specifically, as for the generalized Nelson model, at time ¢ the conditional
(co)variances depend on themselves lagged once and, directly as well as
through the 7 (-) function, on conditional standardized innovations. These,
in turn, are function of lagged error terms, which depend on the lagged
state variables. Therefore the H; matrix can be described by the following
function:

Hi\felson =y |:/Ut—1 (St—Q) 7H£V—61l50n:| ) (29)
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Similarly, the conditional GJR covariance matrix depends on itself lagged
once and, directly as well as through 7,, on lagged error terms, which are a
function of lagged latent variables. That is:

H{/M =y [Et—l (Si-2) JH,:G_‘QR] : (30)

Since both GARCH processes (29) and (30) are systems of first order dif-
ference equations, they have an infinite memory, that is H{ depends on H{_l
and through this on H{_Q, and so on, back to the beginning of the process,
for j = Nelson, GJR. But each of the lagged H} terms is, in turn, a function
of lagged error terms &, (either standardized or in level) and, indirectly, of
lagged state variables S;. Therefore, H] will depend on the entire sequence
of state variables, starting with S,_,, i.e. HJ = ¢/ (S¢—2,Si-3,-..,5). The
associated likelihood function has to take into account all possible paths of
the latent variables. Assume, for the sake of simplicity, that there is only
one state variable and k£ = 2 regimes. At the tth observation, the likelihood
function will have 2! components, rendering estimation soon unfeasible!”.
Bekaert and Harvey (1995), in estimating a CAPM model with a regime
switching ARCH-M technique, remove the path dependence by averaging
out, for each period, the error terms coming from different regimes. Gray
(1996) faces a similar problem in the context of a regime switching univari-
ate GARCH model. He breaks down the path dependence of the conditional
variance by weighting each of its state-dependent components with ex ante
probabilities. Dueker (1997) keeps track of only the two most recent state-
dependent variances, which are again averaged out. Following Bekaert and
Harvey (1995), the error terms coming from each possible regime are aver-
aged out. Specifically, since only the asset return equations show switching
parameters, only the associated disturbances need to be averaged out. Here
it is assumed that the latent variable S; takes on two possible values. To each
of these values is associated a set of asset return equations, which, in turn,
will generate two disturbance vectors, enrs (S;—1 = k), k = 1,2. Weighting
them out with the ex ante probabilities will remove the state-dependence:

2
éM,t:Z P(Si-1=7(St-2; 0)enm(Si-1=17). (31)

=1

éM’t will then be used in each of the two GARCH processes and the
matrix H] will no longer depend on any state variable. In other words,
equation (29) becomes:

HiNelson — f (ﬁt—la Hi\iellson) , (32)

17For further details on regime switching GARCH models and the associated estimation
problems see Cai (1994) and Hamilton and Susmel (1994).
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!/
where T; = [’6 Mt U F,t} . Unie= Enry (=)diag\/HYF=", where (=) denotes
the Hadamard (element by element) matrix division, while diag,/H}¢*™ is
an x 1 vector which includes the square roots of the first n elements on the
main diagonal of the H***" matrix; similarly, vp; = €p(=)diag,/HEG",

where diag/H$" is a m x 1 vector which includes the square roots of the

Nelson
Ht

last m elements on the main diagonal of the matrix. By the same

token, equation (30) reduces to:

HER = g (5, HEF) (33)

!/

where g, = {éM,t ERJ .
Thus, process (11) and (13) become, respectively:

Hy = Hy® (11 — aa’ — bb') +aa’ @ (v,) n (T;) + (¢ @D, +bb’ © Hy,
(34)

H,,1 =Hy® (11 —aa’ — bb') +aa’ © g7, + ¢ ©om,m, +bb' © Hy, (35)

where the elements contained in 7, are modeled as in (14)-(17), but the
residuals for the asset mean equations are set equal to gM,t- Thus, for
. _ A AN

instance, Mypert = -1 (55t00k7t< O) Estock,t-

The vector of unknown parameters 6 is estimated by combining two
numerical algorithms of optimization: The Newton-Raphson and the BHHH
(Berndt, Hall, Hall and Hausman, 1974) methods. The former, though
more primitive, has proved useful in identifying the optimal region in the
parameter space; the latter is a refinement of the first and is widely used in
the empirical GARCH literature. The maximization is performed using the
Constrained ML module in GAUSS software.

5 Emepirical Results

In this Section Merton’s (1973) Intertemporal CAPM is tested. The prices
of risk are first held constant and then allowed to vary over time according to
the filter proposed by Hamilton (1988, 1989, 1990, 1994). When prices are
constant, the conditional second moments implied by Merton’s (1973) asset
pricing theory are assumed to follow first the generalized Nelson parame-
trization and then the generalized GJR model. The former representation
turns out not to be robust to different sets of starting values and optimiza-
tion algorithms. The generalized GJR model, on the other hand, proves
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more suited for the data set employed here. While the market risk premium
plays the more relevant role in the determination of the total premium for
equities, the reverse occurs for T-bills, where the market premium is negligi-
ble when compared to the intertemporal premium. Both the intertemporal
and the market premia are, instead, important determinants of the bond
total premium. Major financial turmoils cause an increase of the premia
required to hold risky assets and spillovers from one market to another are
also captured. When the prices of risk are allowed to be time-varying, the
generalized Nelson model suffers from numerical problems in the optimiza-
tion procedure. Therefore, second moments are estimated only with the
GJR parametrization. Finally, the Markov transition probabilities are first
assumed to be constant, and then allowed to evolve through time with the
use of some information variables. This latter extension, however, does not
seem to improve the final results.

5.1 Conditional Intertemporal CAPM with Constant Prices of
Risk

Merton’s (1973) asset pricing restrictions are tested considering three as-

sets, (US stocks, 6-month Treasury bills, and 10-year government bonds),

and one additional pricing factor (the growth rate of industrial production).
Therefore equation (5) becomes:

3
Ripr = Ay ) hypwie + Aphugn + e, (36)
j=1
where R, includes excess returns on stocks, excess holding yields on the
6-month T-bills and the 10-year government bonds. The dynamic of the
industrial production growth rate (see equation (6)) is assumed to be driven
by itself lagged once and by the three month T-bill return lagged six times,
3MTR; 5 (source: CRSP). This specification is motivated by the fact that
the IP series is serially autocorrelated while interest rates usually show their
effects on investments only after some time:

IPt—H = /Co + /ﬁ]Pt + /C23MTRt_5 + EIPt+1- (37)

The disturbance vector, ;11 = [€pr441 51p7t+1]’, is supposed to be con-
ditionally Student ¢-distributed:

€1 |t ~ Student —t (0, Hyyq,v),
where H;, 1 is a 4 x 4 asymmetric GARCH process. It is first assumed that

H, ., follows the generalized Nelson parametrization described by (11) and
next the generalized GJR model of equation (13).
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The vector of parameters 0 is estimated with the log likelihood function
(27), where the density function ¢ (G41 |S¢; @) becomes a state-independent
multivariate Student t-distribution:

¢ (Ge11[S;0) =

= a (%) [1 n er41(0) Hip (0)_1 e (O)]
F(8)lr (v = 2))* e ()] V=2
(38)
where g = 4, and G,y1 = [Ryy1 TP yq]"S.

5.1.1 The Generalized Nelson Model

In this Section the conditional covariance matrix of the error term vector is
assumed to follow the generalized Nelson model (11). Results are reported
in Table 3. The prices of market and intertemporal risk are both significant
and of the expected sign, while only a; and a, are significantly different from
zero. by is larger than one, which makes the GARCH process non-stationary
(see Zakoian, 1994). However, even if the mathematical properties for stabil-
ity are not fulfilled, depriving the model of a long-term solution, estimations
still bring some economic intuition. Interestingly, ¢, is negative and sig-
nificant, showing that negative past innovations have a larger impact than
positive shocks of the same magnitude on the conditional stock variance.
The opposite occurs for T-bills, with (, larger than zero (although not sig-
nificant). Notice that the signs found for {; and (, are consistent with what
is expected on the grounds of the Engle and Ng’s (1993) tests (see Section 3).
The intuition is therefore the same. The fact that {; < 0 indicates that both
the leverage effect and the feedback volatility hypothesis are at work: When
an unanticipated negative shock occurs, the debt-to-equity ratio increases,
making stocks a riskier asset. If the rise in volatility is anticipated, investors
will require higher returns, generating a fall in equity prices which causes re-
turn shocks. These negative innovations coupled with volatility persistence
explain why the conditional variance increases. The leverage effect does not
play any role for the T-bills. Contrary to Campbell and Hentschell’s (1992)
theory, but consistent with the Engle and Ng’s (1993) test, more weight is
attached to past positive than to negative innovations. As for government

8Estimations have first been carried out assuming that conditional residuals are nor-
mally distributed. When the Student t—distribution is considered, parameters exhibit
the same sign and about the same size as those obtained under normality. The use of a
Student—t distribution has, therefore, given rise to efficiency gains (see Gouriéroux and
Monfort, 1995, for further details).
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bonds and the growth rate of industrial production, the generalized Nelson
model cannot accommodate for the fact that their volatility increases when
both positive and negative past innovations occur. Therefore the sign at-
tached to (5 and (, (which turn out to not even be significant) does not
bring much intuition. Overall, the generalized Nelson model seems to be
suited for portfolios of assets and factors whose conditional volatility, say,
either goes up or down after, respectively, a negative or positive past shock.
Portfolios of equities only, for instance, might be good candidates for this
multivariate asymmetric GARCH parametrization.

The parameters involved in the specification of the state variable are all
significant and of the expected sign. In particular, k; is positive, showing
that the series has a certain memory, while k5 is negative, indicating that a
change in interest rates has an opposite effect on the industrial production
growth rate.

Unfortunately, the optimum that has been reached, besides being non-
stationary, is not robust to different sets of starting values or algorithms
other than Newton-Rapson, which questions the reliability of the parameters
that have been found.

5.1.2 The Generalized GJR Model

In this Section the conditional second moments of Merton’s (1973) asset
pricing model are assumed to follow the asymmetric GARCH process given
by (13), where the four elements included in n), are described by equations
(14) to (17). Results are shown in Table 4, Panel A. The two prices of risk,
Ay and Ap, are, respectively, positive and negative, in line with the theory,
as well as significantly different from zero. All the parameters implied by
the GARCH process (13), apart from (;p;, as well as those governing the
dynamic of the state variable, are significant. To test the asymmetric against
the symmetric GARCH process as well as whether some of the (’s parameters
are equal, several Wald tests have been carried out (See Table 4, Panel B).
The two null hypotheses that C;,.q1 = Coonaz @0d (;p; = (;py are rejected at
any conventional level, as well as the null that all the six (’s are jointly equal
to zero. Furthermore, the optimum that has been reached is now robust to
different sets of starting values and to two optimization algorithms (Newton-
Rapson and BHHH).

In Figure 1 the market (MRP), intertemporal (IRP), and total (TRP)
risk premia for each asset are plotted. The formulae to compute each pre-
mium are given by equation (39), (40), and (41), respectively:
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Table 3
Estimation results for the Merton’s (1973) Intertemporal CAPM
with constant prices of risk
Conditional second moments specification: Generalized Nelson
model

The estimated model is:

3

Ri1 = A Y hjiwjy + Arha1 + €,
Jj=1

IP = ko+ kiIP, + ko3MTR,_5 + €rpgya,

The error terms are conditionally Student t-distributed, ie. €441 |y ~
Student — t (0,H;;1,v). The conditional covariance matrix follows the gen-
eralized Nelson process described by equation (11):

H, , = Hy® (11 —aa’ —bb')+aa’ on(v,)n(v,)' +¢¢ ©vw, +bb 0 H,.

where 7 (vy) = |v| — E|vg|. vy = €4(=)diagy/Hy, where (=) denotes the
Hadamard (element by element) matrix division, while diagy/H; is a vector
which includes the square roots of the elements on the main diagonal of the
H; matrix. Since the error terms are assumed to be Student ¢-distributed,

Elvg| = {(2/m)"* [0 (v - 1) /2] /T (v/2) } 1.

/\M /\F ]{20 /Cl /Cg 14
0.046 —1.434 0.470 0.228 —0.534 4.005
(0.012)  (0.210)  (0.057)  (0.043)  (0.104)  (0.135)

Rstock sz‘ll Rbond IP

—0.088 —0244 —0092 —0.018
(0.040)  (0.033)  (0.051)  (0.019)
~1.869  0.009 0.063 —0.030
Sl o0.604)  (0.017)  (0.054)  (0.008)
0.907 0.960 0.920 1.003

(0.042)  (0.011)  (0.065)  (0.001)

| Log-likelihood function —7.570 |

Standard errors, based on the matrix of second derivatives of the log likelihood
function, are shown in parentheses.
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Table 4
Estimation results for the Merton’s (1973) Intertemporal CAPM
with constant prices of risk
Conditional second moments specification: Generalized GJR
model

The estimated model is:

3

Riy1 = Ay Z hj 1w + Arhas + €nrega,
j=1

IP 1 = ko + kiIP, + ko3MT Ry 5 + €1p41,

The error terms are conditionally Student t-distributed, ie. €441 Sy ~
Student — t (0,H;;1,v). The conditional covariance matrix follows the gen-
eralized GJR process described by equation (13):

H,;; =Hy©® (11’ —aa’ — bb’) + aa’ © &} + ¢’ ® n,n, + bb’ © H,.
where 0000 = —1 (Estockt < 0) Estock,ts My = 1 (Evitre > 0) €vittts Moonar =

Cbondl * Ebond,t if Ebond,t =~ 0 . CIPI “EIPt if Erpt > 0
Y <0 ,and 1yp, = Y <0
—Cpond2 * Ebond,t i Epondt < —Crpo-€rpy iferpy <

Panel JA: Estimation results

/\M /\F ]{?0 kl ]{?2 14
0.037 —0.524 0.548 0.191 —0.453 4.637
(0.011)  (0.119)  (0.081)  (0.048)  (0.144)  (0.490)

Rstock sz’ll Rbond IP

0.308 0.354 0.350 0.341
(0.030)  (0.033)  (0.024)  (0.030)
0.297 0.195

Sl (0.058)  (0.056)

0.932 0.931 0.936 0.940

b (0.014) (0.013) (0.009) (0.011)
Cbondl CbondQ CIPI CIPQ
—0.198 0.348 0.085 —0.323
(0.054) (0.053) (0.065) (0.057)
| Log-likelihood function —7.377 |

Standard errors, based on the matrix of second derivatives of the log likelihood
function, are shown in parentheses. 40



Panel 4B: Specification tests for the parameters governing the asymmetric
effects

Null Hypothesis D.of F. %2,

p-value

Do positive and negative past shocks have the same
effect on government bond volatility? 1 47.463
Hy : Cbondl = Cbond2

Do positive and negative past shocks have the same
effect on industrial production growth rate volatility? 1 21.260
Hy : Crp1 = Crpo

Are all the parameters governing the asymmetric
effect in conditional second moments significant? 6 90.775

Hy : Cstock = Cbul = Cboncn = Cbomn = (rp1 = (rp2 =0

0.000

0.000

0.000

The Wald test statistics is asymptotically distributed as an, with m indicating
the degrees of freedom.

3
MRP;111 = Ay Z Cov (R; 41, Rjt1|Se) wig, 1 = stock, bill, bond.

j=1
(39)
IRP; i1 = Ap (CovR; 141, IPy1|Sy) i = stock, bill, bond. (40)

TRP; 441 = MRP; 411+ IRP; 414, 1 = stock, bill, bond. (41)

First, notice that the price of intertemporal risk is negative. This means
that the elasticity of marginal utility of wealth with respect to the growth
rate of industrial production is positive, i.e. Jyrp > 0. When IP goes
up, signaling an expansion in the economy, the marginal utility of wealth
increases as well. Therefore, the sign of the intertemporal premium will
depend on the sign of the covariance between each asset and the growth
rate of industrial production. If this covariance is positive, the total pre-
mium investors require for each security will decrease; conversely, when the
covariance is negative, the total premium will increase.

As far as stocks are concerned, market premia are seen to increase in
two recessional periods as reported by NBER, namely in the early "70s, and
during the contraction caused by the first oil shock. The raise in premia is
much more modest in the first half of the '80s, and in the early '90s, again
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Figure 1: Components of excess returns

Conditional Intertemporal CAPM with constant prices of risk. Conditional
second moment specification: Generalized GJR model. The scale along the
vertical axes is in units of percent.

Figure 1A: Stock excess returns
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Figure 1C: Fxcess holding yields on 10-year government bonds
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periods of contraction according to the NBER. Furthermore, market premia
surge during the 1987 stock market crash, and finally during the 1997/98
Asian-Russian-Latin American crises. The intertemporal risk premium is
almost always negative until the middle of the '70s and thereafter almost
always positive, with the exception of the period following the first oil shock.
Such a time evolution can have an appealing interpretation: In the middle of
the ’70s, when the consequences of the oil shock hit the American economy
heavily, the intertemporal risk premium shows its highest peak, increasing
the total premium investors require to hold equities. In such a contraction
phase, stocks were not good hedges against business cycle downturns. On
the contrary, the deepest through which occurred in the second half of the
’70s might indicate the willingness to hold stocks, due to the recovery of the
economy. Overall, from the ’80s on, the intertemporal risk premium is posi-
tive, reflecting a negative correlation between stock returns and the growth
rate of industrial production. Such a negative conditional covariance can be
explained considering that the stock market and growth rate of industrial
production are linked but are not in phase (see, for instance, Hamilton and
Lin, 1996, Chauvet and Potter, 1998, and Chauvet, 1999)'°. In this case,
the total premium investors require to hold equities increases. Finally, no-
tice that the market premium constitutes the main component of the total
premium.

The largest movements in the T-bill market risk premia occurre after
the first oil shock and between 1979 and 1982. During this latter period the

Ynterestingly, also the unconditional covariance between the two time series is negative
and equal to —0.154.
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Federal Reserve (Fed) changed its monetary policy in that, instead of tar-
geting interest rates, it preferred to control nonborrowed reserves. Interest
rates went up, next down, and increased again afterwards. Volatility, thus,
surged for government fixed income securities. As a consequence the market
premium is seen first to decrease and then to rise. The money market also
suffered from the stock market crash, as evidenced by the peak at the end
of 1987. The intertemporal risk premium is positive most of the time, indi-
cating that the covariance between returns on T-bills and the growth rate
of industrial production is almost always negative, which finds its rationale
in the negative correlation between interest rates and investments. Indeed,
it reaches its highest peaks at the beginning and in the middle of the "70s
and in the first half of the '80s. This may reflect the fact that T-bills are not
considered a good hedge against “bad times”. A result which is intuitive,
if one considers that returns on T-bills show a sort of pro-cyclical pattern:
Usually central banks lower (increase) interest rates at business cycle troughs
(peaks), in an attempt to stimulate (cool down) the economy. Overall, the
total premium that comes out is much larger than the market risk premium:
When the two premia are plotted on the same graph, the latter is negligible
when compared to the former, indicating that the total premium is almost
entirely driven by the intertemporal premium.

As far as government bonds are concerned, the market risk premium in-
creases in the early and middle "70s, periods of business cycle downturns, as
well as between 1979 and 1982, again due to the change in the Fed’s mon-
etary policy. The market risk premium plunges in correspondence of the
October 1987 stock market crash: Probably investors feared a weakening in
the economy and expected that bonds would have performed better than
shares?’. Indeed, growing numbers of institutional investors, who tradition-
ally used to hold mainly equities, switched to bonds. The decrease in the
bond market premium reflects this post-crash “flight to quality”. A similar
phenomenon occurred at the end of 1998, when the market premium is again
negative. The intertemporal risk premium is positive most of the time, in-
dicating that the conditional covariance between returns on bonds and the
growth rate of industrial production is almost always negative. Government
bonds, therefore, cannot be considered good hedges against business cycle
downturns. Finally, once more, the intertemporal premium constitutes an
important portion of the total.

All in all, if the “true” model is Merton’s (1973) Intertemporal CAPM
but asset pricing and portfolio management are carried out with the tradi-

20Tn another version of the generalized GJR model, where the same weight is attached
to both positive and negative past bond and IP shocks, the bond market risk premium is
seen to increase after October 1987. This indicates that the specification proposed here
is preferable.
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tional static CAPM, where the total and the market premia coincide, then
investors might be seriously mistaken. However, these results must be inter-
preted with caution. Even if Merton’s model is more satisfactory than the
traditional one, it provides little guidance for the choice of the additional
pricing factors as well as their number, a topic worth a separate study (see,
for instance, Chen, Roll, and Ross, 1986, and Fama, 1998).

5.1.3 The Asymmetric Effects in Conditional Second Moments: Graphical Ev-
idence and Robust Test Statistics

This Section provides graphical evidence and diagnostic robust test statis-
tics to show that the generalized GJR model (13) - (17) is able to capture
the asymmetric responses of variances and covariances to past shocks. In
particular, news impact functions and surfaces (see Engle and Ng, 1993,
and Kroner and Ng, 1998 for details) are plotted. Furthermore, the robust
conditional moment test statistics proposed by Kroner and Ng (1998) are
computed.

Notice that, due to the use of a diagonal GARCH process, by construc-
tion, the (7, 7)th element of the covariance matrix only depends on the cor-
responding past (¢, j)th innovation, while past cross products of the ¢;’s do
not enter into second moment specification. Therefore, here news impact
curves establish a relationship between the current conditional volatility of
the variable ¢ and its own last period shocks (news) ¢;;, evaluating lagged
conditional variances at their unconditional sample mean level. Similarly,
news impact surfaces plot conditional covariances between variables i and j
against past innovations ¢; ;¢ , holding lagged conditional covariances con-
stant at their unconditional value. In Figure 2, such curves and surfaces are
represented for excess returns on stocks, T-bills, and government bonds, as
well as for the growth rate of industrial production.

As far as equities are concerned, negative shocks increase the conditional
variance much more than positive innovations of the same magnitude, while
the opposite occurs for T-bills. Like equity variance, conditional volatility
of bonds as well as that of the growth rate of industrial production respond
more to past negative than positive shocks, though the difference is not that
large.

To better see the effect of the asymmetric component in the generalized
GJR model, Figure 2B plots the conditional covariance between two generic
variables i and j when the term (¢’ ® 1,1, is set equal to zero and the
asymmetric GARCH process (13) reduces to the symmetric specification
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Figure 2: News impact curves and surfaces of the generalized
GJR model

The scale along the vertical axes is in units of percent.

Figure 2A: News impact curves
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Figure 2B: News impact surfaces: Symmetric specification
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Figure 2C: News impact surfaces: Asymmetric specification
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Figure 2C (contd.): News impact surfaces: Asymmetric specification
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Figure 2C (contd.): News impact surfaces: Asymmetric specification
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given by equation (9)?'. In this case, when past shocks show the same
sign and both take on extreme values, the conditional covariance reaches
its highest (same) peaks. Conversely, when extreme past innovation values
of different signs are combined, the conditional covariance is seen to be at
its lowest (same) levels. Such a representation is used as a benchmark. In
Figures 2C, instead, second moments obtained from estimating model (13)
are plotted. Large positive equity shocks together with small negative T-bill
innovations increase the conditional covariance, whereas the remaining part
of the surface does not change much if compared to Figure 2B. Similarly, the
conditional covariance between stocks and bonds responds asymmetrically
to large positive equity shocks and small bond innovations. The conditional
covariance between equities and IP is seen to decrease when bad news hits
the stock market while there are negative innovations for the state variable.
Good news to the bond market and bad news to the T-bill market bring
the conditional covariance up. When negative T-bill shocks are associated
with positive IP shocks, the correspondent conditional covariance decreases.
Finally, the surface representing the conditional covariance between bonds
and IP exhibit a shape similar to that of stocks and the industrial production
growth rate.

Diagnostic statistics for the standardized residuals in level, i.e. €, ; =
8i7t+1h;-}tf1, and squared, i.e. g;“i 41 = &2 +1h;,1t 41, of the generalized GJR
model are presented in Table 5. The Ljung-Box portmanteau statistics does
not reject the null of no simultaneous autocorrelation for stocks, bonds, and
the industrial production growth rate, but it does for T-bills, indicating that
an autoregressive term in the T-bill mean equation might provide a better
fit.

The Ljung-Box tests, however, are not suited to check whether a GARCH
process is able to capture the asymmetric responses of conditional second
moments to past innovations. Therefore, to check if the generalized GJR
model is mis-specified, the robust conditional moment tests of Kroner and
Ng (1998) are applied (see the authors for further details). These tests are
based on mis-specification indicators, z,. In particular, one has to com-

pute z; = I(g;, <0), l =1 =1,...,4; 21y, = (654 < 0;¢5, <0), 2oy, =
I(eir <0565 >0), 3 = I(ciy > 05654 <0), g, = I (54> 0;¢, > 0),
i,j = 1,...,4, for a total of 24 combinations; x,, = sitf(sj’t <0),i,j =
1,...,4, for a total of 16 combinations. Finally, for the sake of complete-
ness, another set of mis-specification indicators can be proposed, namely
T, = af’tf (60 >0),14,5=1,...,4, for a total of 16 combinations. The last

set of indicators can be seen as an extension to a multivariate context of the

2'When plotting news impact curves and surfaces, since lagged conditional (co)variances
are evaluated at their unconditional sample mean level, they are mere scaling factors. For
the sake of simplicity, when ¢¢’ ® m,n} = 0, they are set equal to one.
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Table 5
Diagnostic tests for the standardized residuals of the generalized

GJR model
Rstock Rbill Rbond TP
Mean —0.048 0.233 —0.082 —0.109
Std. Dev. 0.894 0.921 0.822 0.822
L-B;:> €111 7.719  29.047 15.734  13.460
L-Bis (ef7,,) | 6.524 38.394™ 10424  14.989

** denotes 1% significance level.

The Ljung-Box,, (L-B,,) statistics tests the null hypothesis that all autocorrela-
tion coefficients are simultaneously equal to zero up to m lags; it is asymptotically
distributed as an. It has been chosen m = 12 for which the critical values at 95%
and 99% confidence level are 21.026 and 26.217, respectively.

positive size-bias tests introduced by Engle and Ng (1993). As before, I (-)
represents the indicator function. Since all the possible combinations give
rise to 60 figures, the test statistics are not reported here??. Importantly,
the generalized GJR model is rejected only three times out of sixty at 1%
significance level, which indicates that the representation is well specified.

5.2 Conditional Intertemporal CAPM with Time-Varying Prices
of Risk

There is large consensus on the fact that both expected excess returns and
conditional (co)variances change through time (see the extensive surveys of
Bollerslev, Chou, and Kroner, 1992, Bera and Higgins, 1993, and Bollerslev,
Engle, and Nelson, 1994). However, first and second conditional moments
do not move in a one-to-one proportion. Therefore, in CAPM-type models
the risk-return relationship is not constant over time. The estimation of
the coefficient of risk aversion, though, is one of the “unsolved” issues in
empirical finance. Being related to the investors’ utility function (see Section
2), which is not observable per se, its evolution over time is often based on
some presumptions. Nevertheless, its sign and magnitude are crucial, since
they directly affect risk premia.

Although in French, Schwert, and Stambaugh (1987) the coefficient of
risk aversion is positive but not significant, interestingly, it turns out to be
very unstable across sample periods. In their estimations, the risk-return re-
lation ranges from 1.510 to 7.220, when the NYSE monthly value-weighted

22Figures relative to the robust conditional moment tests are available from the author
upon request.
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index is used, and from 0.598 to 7.809, when the S&P’s daily composite in-
dex is adopted. The two subperiods considered are 1928-1952 and 1953-1984,
respectively. Thereafter, empirical research has continued to find support
for a time-varying price of market risk: See, for instance, Harvey (1989,
1991), Chou, Engle and Kane (1992), Bekaert and Harvey (1995), Dumas
and Solnik (1995), Cappiello (1998), De Santis and Gerard (1997, 1998a,
1998b), Chauvet and Potter (1998), De Santis, Gerard, and Hillion (1998),
Cappiello (1999), and Bekaert and Wu (2000). All these studies, apart from
Chou et al., Cappiello (1999), and Chauvet and Potter, model the coefficient
of risk aversion as a function of a certain number of instruments, which are
designed to capture expectations in business cycle fluctuations®®. This re-
search documents that the price of risk increases during economic troughs
while decreases during expansionary phases of the business cycle (a pattern
particularly clear in Harvey, 1989, and Bekaert and Harvey, 1995). A cri-
tique that naturally arises is that the coefficient of risk aversion might follow
a counter-cyclical path because the instruments through which it is modeled
mimic the business cycle phases. It is true that since the parameters of the
risk-return function come from an estimation procedure, the coefficient of
risk aversion could, instead, well display a pro-cyclical pattern or even be
constant over time. However, one can undoubtedly argue that the relation-
ship between the price of risk and economic fluctuations is superimposed by
the econometrician by his particular choice of information variables. Chou
et al. estimate a time-varying coefficient of risk aversion first with rolling
regressions and then with a Kalman filter conditional on the parameter val-
ues. Interestingly, with Chou et al.’s approach the time-varying risk-return
relationship does not seem to be related to the business cycle. In particular,
the price of market risk is high for the mid-"50s through the early '70s and
low in the depression and war years as well as in the ’80s. A non-linear
risk-return relationship is estimated by Chauvet and Potter by combining a
non-linear discrete version of the Kalman filter with Hamilton’s (1988, 1989,
1990, 1994) regime switching model. The risk-return relationship turns out
to be positive around business cycle troughs and negative around economic
peaks. Cappiello, who employs Hamilton’s filter to estimate the price of
market (and intertemporal) risk, identifies two states which may reflect a
switch in investors’ preferences whose degree of risk aversion increases in
correspondence to financial turmoil.

With few exceptions (see, for instance, De Santis and Gerard, 1998b, and

23The information variables widely used when modelling the price of market risk are: i)
a constant term; ii) the dividend yield on the national equity index in excess of the risk-free
rate; iii) the change in the 1- or 3-month T-bill rate; iv) the default premium (Moody’s
Baa minus Aaa bond yields); and v) the term structure spread (10-year government bond
minus 3-month T-bill yield). Sometimes a January dummy is also included.
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Cappiello, 1999), the literature is silent about the possibility that also the
price of intertemporal risk varies over time. However, if it is true that the
risk-return relation changes because both first and second moments vary
over time not in a one-to-one proportion, then for the same reason the
intertemporal price of risk has to be time-varying.

As seen in Section 2, both Ay, and A depend on first and second deriv-
atives of the derived utility function of wealth, which represents investors’
preferences and, as such, has an unknown functional form. \,; is also func-
tion of the wealth value, W. \j; and Ar are harmonic means of the prices
of risk of each investor. In this paper, following Cappiello (1999), any a
priori assumption about the functional form of the prices of risk is avoided
and both \j; and Ap are estimated through the regime switching model of
Hamilton (1988, 1989, 1990, 1994). This methodology has the advantage
of making both Ay, and Ap time-varying and letting the data “speak for
themselves”. As discussed in Section 4, it is assumed that the prices of risk
are driven by the same two-state Markov latent variable.

When A\, and Ap are time-varying, the asset pricing restrictions are
described by equation (22), where now n = 3.

The dynamic of the additional pricing factor, the growth rate of industrial
production, is again given by equation (37). As before, the disturbance
vector, €11 = [Eamss1 E1ps11] 5 1S assumed to be conditionally Student t-
distributed

€1 |t ~ Student —t (0, Hyyq,v),

where H, 1 is a 4 x 4 asymmetric GARCH process. Once more, the con-
ditional second moments implied by Merton’s (1973) Intertemporal CAPM
are estimated first with the generalized Nelson parametrization and next
with the generalized GJR model. The vector of unknown parameters, 6,
is estimated by maximizing the likelihood function (27), where the state-
dependent conditional density functions are given by equation (26), with
G; = [R; IP] and g = 4**. When the generalized Nelson process is em-
ployed, however, the covariance matrix of the parameters fails to invert, with
the consequence that the standard errors are not available. Since this can
be interpreted as a mis-specification of the model, the generalized Nelson
process is discarded from the analysis. Once prices are allowed to switch,
though, the generalized GJR model also shows difficulties in convergence.
Therefore, to reduce the number of unknown parameters, a simplified ver-
sion of the latter is estimated. In particular, the third and fourth elements
of the vector 1, in equation (13) are modeled as follows:

24Gee footnote no. 16.
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1. Ebond if Ebond,t = 0 5
nbond,t - { ! * ) (16 )

—1- Ebond,t if Ebond,t S 0
1-erps if erpy >0
— ) . ) 1 Y
Nrpt { —1-e1py if e1py <0 (17)

or, in terms of the indicator function:
Mt =1[2-1(giy >0) —1]es;  for i = bond, IP.

As a consequence, the third and fourth elements of the vector ¢ in equa-
tion (13) are no longer constrained to be equal to one and are estimated as
free parameters. This representation assumes that the conditional volatility
of government bonds and industrial production does not respond differently
to positive and negative past shocks. Indeed, the parametrization in (16’)
and (17’) amounts to just considering the absolute value of 45,4+ and e;py,
with weights (;,,,4 and (;p, respectively.

Furthermore, the Markov transition probabilities implied by the use of
the regime switching model are first held constant, and then allowed to vary
over time.

Next subsection reports the results that are obtained.

5.2.1 The Generalized GJR Model

The estimation results for the generalized GJR model are reported in Table
6. The price of market risk is seen to switch from a low to a high regime,
even though when it takes on the low value the probability of rejecting the
null Hy : A\y1 = 0 is equal to 90.78%. The price of intertemporal risk also
show evidence of two states, both significantly different from zero. Since
the Markov transition probabilities p and ¢ are significant as well, one can
appeal to the economic significance of a second regime, interpreted as a
change in investors’ preferences®. Interestingly, all the (’s, apart from (,,
are significant, showing, once more, that the model proposed to capture
asymmetry in second moments, though simplified, is still valid. Moreover,
a Wald statistics which tests the null Hy : (; = ... = (4, = 0 rejects it
at any conventional level. The Wald statistics is equal to 52.686 and it is

ZEven though the model with switching prices of risk nests that with constant prices
as a special case, to test for the statistical significance of the second regime, one cannot
use a Likelihood Ratio (LR) test. This is due to the presence of nuisance parameters,
i.e. those that are not identified under the null of a single regime. In this case the usual
regularity conditions which justify the y? approximation to the LR test no longer hold.
Hansen (1992, 1996) has suggested asymptotically valid tests that overcome this difficulty.
The procedure, however, is computationally burdensome and it is usually applied to quite
simple models. Therefore it will not be adopted in this research.
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asymptotically distributed as a x2,, with m = 4 degrees of freedom. Its
critical value at 99% confidence level is 13.277. Finally, all the k’s turn out
to be significant.

As for the switches in the prices of risk, two relevant issues can be dis-
cussed. The first is to uncover whether these changes are caused by move-
ments in some macroeconomic fundamentals, like business cycle phases, or
if they are generated by other factors, like changes in the states of financial
market volatilities, which are not necessarily matched by contractions or
expansions. The second is to check whether investors tend to become more
risk averse before a financial turmoil, anticipating a future surge in volatility.
To address these questions the smoothed probabilities become of interest. In
estimating regime switching models, apart from the Markov transition prob-
abilities, three conditional probabilities are usually computed: The ex ante
probability, P (Si1 =k|[S4;0), k = 1,..., K, which is of interest in fore-
casting and is based on an evolving information set; the filter probability,
P (S; = k|Sy;0), which serves to filter the data and infer the likelihood
of the current regime; finally, the smoothed probability, P (S; = k [S7;0),
which is based on the entire information set available and is designed to de-
termine if and when the regime switches have occurred. In the top panel of
Figure 3 the smoothed probabilities of the state in which the price of market
risk is high while the price of intertemporal risk is low (state 2) are plotted.
These are calculated with the algorithm developed by Kim (1994). In the
bottom panel squared market excess returns (SMER) are represented. The
latter is a rough indicator of the unconditional market volatility (Merton,
1980) and is computed as follows:

SMER.1 = (wj, Rep)

where w;; is the vector of value weights and Ry, the vector of asset ex-
cess returns. Vertical lines indicate the NBER business cycle peak and
trough dates. Contrary to previous research (see, for instance, Harvey, 1989,
Bekaert and Harvey, 1995, Chauvet and Potter, 1998), here it is not possible
to detect a clear correspondence between business cycle contractions, on one
hand, and increases in the coefficient of risk aversion, on the other hand. The
probability of a high price of market risk, instead, seems to match periods of
high market volatility, though, also in this case, the correlation is not that
strong. Without considering the estimates obtained during earlier periods of
the sample which are imprecise since little information from the data is used,
the following regularities can be observed: The major spikes which hit finan-
cial markets in October 1974 and October 1987 are captured by the model
but with some lags. The turbulence that occurred between 1979 and 1982,
when the Fed ceased to target interest rates, is also not fully reflected by the
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Table 6
Estimation results for the Merton’s (1973) Intertemporal CAPM
with time-varying prices of risk
Conditional second moment specification: Generalized GJR
model

The estimated model is:

3
Rit1 = As, D hjwie + Apshaein + e,
Jj=1

IP = ko+ kiIP, + ko3MTR,_5 + €rpgy1,

The error terms are conditionally Student t-distributed, ie. €441 Sy ~
Student — t (0,H;;1,v). The conditional covariance matrix follows the gen-
eralized GJR process described by equation (35):

H, 1 =H,® (11' — aa’ — bb') + aa’ © &7, + (¢’ @ 7,7, + bb' © H,.

A r_ A A —
{eM,t €rpt| 5 Mstockt — —I (5stock,t< 0) Estock,ty Tbill,t

I (sz‘ll,t> 0) ébz‘ll,ta Moond,t = [2 - (Qbond,t> 0) - 1} Qbond,u and 1;p, =
[2 i (gjpyt > O) — 1] EIpt-

where €;

>\M1 )\Mg )\Fl )\F2 p q
0.022 0.082 —0.545 —3.978 0.963 0.942
(0.013)  (0.023)  (0.273)  (0.478)  (0.017)  (0.026)

ko ky ko v

0.467 0.273 —0.484 4.463

(0.077)  (0.044)  (0.129)  (0.460)

Rstock sz’ll Rbond IP

0.248 0.340 0.313 0.113
(0.043)  (0.027)  (0.030)  (0.013)
0.354 —0.045  0.242 0.050
S| 0070)  (0.070)  (0.043)  (0.015)
0.916 0.936 0.945 0.994
(0.019)  (0.011)  (0.010)  (0.003)

| Log-likelihood function —7.300 |

Standard errors, based on the matrix of second derivatives of the log likelihood
function, are shown in parentheses.
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smoothed probabilities, which increased only in the 1982 spring/summer.
This might be due to the composition of the portfolio analyzed here. Since,
over the whole sample, the market portfolio never has less than 60% eq-
uity, the weight assigned to the conditional stock volatility dominates the
covariances between stocks and the other two assets. Therefore, smoothed
probabilities are mainly affected by stock market turmoils. An alternative
interpretation is that investors become more risk averse after financial crises
have unfolded. Apart from these events, any time squared market excess
returns go up the probability of high risk aversion also increases. Such a re-
sult is in line with Campbell and Cochrane (1999), where risk aversion rises
when asset prices fall. The fact that a high price of market risk is matched
by a low price of intertemporal risk has an appealing intuition: The higher
the risk aversion, the lower the fraction of wealth invested in risky assets,
and, therefore, the less the importance attached to the intertemporal risk.
Furthermore, even for the periods for which it is possible to establish a si-
multaneous link between an increase in financial market volatility and in the
smoothed probabilities, it seems that these latter do not anticipate financial
turmoil.

Thanks to the smoothed probabilities it is also possible to compute the
relative likelihood of each regime with the formula proposed by Dahlquist
and Gray (2000):

§t:arg max P (S; = k|S7;0). (42)
ke{1,2}

Equation (42), which assigns observations to a particular regime on the
grounds of the relative probabilities of being in each regime, also allows
one to estimate the number of switches. The observations which fall in the
low risk aversion-high price of intertemporal risk state is equal to 300 (i.e.
investors are in state 1 about 64% of the time), while there are 17 switches
from one regime to the other. As reflected by the Markov probabilities, each
regime is quite persistent. Conditional on being in state 1, the expected
duration (in months) of low risk aversion-high price of intertemporal risk is
(see Hamilton, 1989):

LN 1
Dy =Y j¢ ' =——=17.241
=1 1—q

Similarly, the expected duration of high risk aversion-low price of in-
tertemporal risk, conditional on state 2, is

Dy =Y jp ' = T = 27027
=1 P
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Figure 3: Smoothed probabilities and squared market excess
returns
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While for the Intertemporal CAPM with constant prices of risk all the
risk premia can be computed in a deterministic fashion, when a regime
switching model is introduced, the premia have a stochastic component,
given by the switching prices. Expected market, intertemporal, and total
premia (EMRP, EIRP, and ETRP, respectively) for each asset are plotted
in Figure 4 according to the following formulae:

2
EMRP; 41 = [Z A=k P (St = k[Si1; 9)]
k=1

3
Cov (Ri 41, Rj1 |Se) wiy |
-1

(43)

J

2
EIRP; 111 = lz Ar,s,=kP (St = Kk [S¢-1; 9)] Cov (R 41, I Py1 [St), (44)
k=1

ETRP; 411 = EMRP; 11 + EIRP; 441, (45)

for i = stock, bill,bond. P (S; = k|S;_1;0) represent the ez ante probabil-
ities discussed in Section 4. For each asset, the time evolution of the three
premia are quite similar to the path seen when prices of risk were held con-
stant. It is the magnitude, rather the pattern of the premia, which varies,
due to the change in the proportionality factors (i.e. the prices of risk).
Therefore, the reader is referred to Section 5.1.2 for the interpretation of the
results. Here, only the main differences are highlighted.

As far as stocks are concerned, market premia show much less pronounced
spikes than in the case of constant prices of risk. The only exception occurs
at the end of 1998, where the market premium increases much more when
Hamilton’s (1988, 1989, 1990, 1994) filter is employed. As expected, the
differences in the intertemporal risk premium are more relevant due to the
constraint (;p; = (;ps = 1 and go beyond a pure scale effect. Here, a huge
trough occurs in the first half of the '70s, mainly due to a switch in the price
of intertemporal risk, which moves from a high to a low state. While in
the middle of the ’70s the premium becomes positive when prices of risk are
constant, it is negative when they are allowed to vary over time, a pattern
which can be attributed to the different GARCH parametrizations. The
remaining differences are more modest and can be essentially explained by
the use of time varying prices of risk. Finally, notice that, also in this case,
the market premium is the main component of the total premium.

The T-bill market and intertemporal risk premia follow approximately
the same time path both when prices are kept constant and when they are
allowed to vary. The scale effect seems to play the major role in explaining
the differences between the two models.
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As for the bond market risk premium, the most striking differences ap-
pear after the stock market crash in October 1987 and during the 1997/98
Asian-Russian-Latin American crises. The model where the constraint (.41 =
Chonge = 1 is imposed is not able to capture the “flight to quality” from
stocks to bonds which occurred at those times. Whereas the intertemporal
risk premium plunges at the beginning of the ’70s in the specification with
time varying prices of risk, it is positive in the case where the constraint
Crp1 = (rpy = 1 is relaxed.

All in all, if the specification where prices of risk can change through time
allows to accommodate shifts in investors’ preferences, it sacrifices flexibility
in terms of the GARCH parametrization. Relevant phenomena, like the
decrease in the bond risk premia which occurred after some equity market
falls, are not captured.

Due to the less satisfactory GARCH model as far as asymmetry is con-
cerned, news impact curves and surfaces are not plotted here and the robust
conditional moment test statistics of Kroner and Ng (1998) are not com-

puted. The usual Ljung-Box portmanteau statistics for the standardized
. . . A* A ~1/2 . N A2
residuals in level, i.e. &, 1=€; 11 hyy5, and squared, ie. €,.,=¢;;,
;i 41, are, instead, proposed and reported in Table 6%6. As in the case
where prices of risk are held constant, no simultaneous autocorrelation for
stocks and bonds is detected for residuals either in level or squared. The
null hypothesis is, instead, rejected for T-bill error terms, suggesting that
an autoregressive term in the T-bill mean equation might provide a bet-
ter fit. Extra explanatory variables are probably called for with regards to
the second moment specification of the industrial production growth rate
as well, since the Ljung-Box portmanteau statistics for squared residuals is
significant at 1% level. Notice that, when the constraint (;p; = (;py = 1 is
relaxed, IP squared residuals do not show any autocorrelation (see Section
5.1.3).
The model with time-varying prices of risk has also been extended by
allowing the Markov switching probabilities to be state-dependent. In par-

ticular equation (23) has been specified as follows:

pe=® ﬁpo + ﬁpth—l)
q =P ﬂqo + ﬂq1Zt—1) 7

where @ (-) is the cumulative normal distribution and Z;_; is an information

(46)

Z6Notice that when i = I P, residuals do not need to be averaged out (See Section 4.2
for further details).
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Figure 4: Components of excess returns

Conditional Intertemporal CAPM with time-varying prices of risk. Conditional
second moment specification: Generalized GJR model. The scale along the

vertical axes is in units of percent.

Figure 4A: Stock excess returns
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Figure 4B: Ezxcess holding yields on 6-month T-bills
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Figure 4C: Fxcess holding yields on 10-year government bonds
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Table 6
Diagnostic tests for the standardized residuals of the generalized
GJR model
Rstock’ Rbill Rbond IP
Mean —0.051 0.080 —0.097 —0.023
Std. Dev. 0.846 0.979  0.822 0.870

L-By, (Q;H) 7573 28.020% 8.020  15.500

*2
L-Bis (le) 6.232 39.066" 13.420 34.878"

** denotes 1% significance level.

The Ljung-Box,, (L-B,,) statistics tests the null hypothesis that all autocorrela-
tion coefficients are simultaneously equal to zero up to m lags; it is asymptotically
distributed as x2,. It has been chosen m = 12 for which the critical values at 95%
and 99% confidence level are 21.026 and 26.217, respectively.

Notice that when ¢ = I P, residuals do not need to be averaged out (see Section
4.2 for further details).
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variable. A large set of instruments has been experimented?”. The one that
has provided with the most sensible results is the one-year Treasury bill yield,
1Y R;—1 (source: Federal Reserve). The choice of 1Y R;_; is motivated by
the fact that the switch to the high-risk aversion/low-price of intertemporal
risk regime may be more likely when, for instance, that interest rate becomes
high. In these times, typically, stock markets tend to fall, industrial produc-
tion usually decreases and agents become more risk-averse. However, since
a Likelihood Ratio (LR) test clearly rejects the model with state-dependent
transition probabilities, parameter estimates for this specification are not
reported. The LR statistics is equal to 0.020 and is asymptotically distrib-
uted as a x?2,, with m = 2 degrees of freedom. Its critical value at the 95%
confidence level is 5.991. Nevertheless, the smoothed probabilities relative
to the regime where the coefficient of risk aversion is high and the price
of intertemporal risk is low are reported and compared with the smoothed
probabilities of the same state obtained imposing constant Markov transi-
tion probabilities. As evident from Figure 5, the more important difference
between the time evolution of the two smoothed probabilities occurs in the
first half of the ’80s: When the Markov switching probabilities are allowed
to vary over time, the correspondent smoothed probabilities are quite flat.
This model, thus, fails to capture the turbulence in the government fixed
income security market due to the change in the Fed’s monetary policy.

6 Summary of Results and Conclusions

This paper estimates a trivariate two-factor conditional version of the In-
tertemporal CAPM of Merton (1973). The analysis considers three assets:
US stocks, 6-month T-bills, and 10-year government bonds, with the purpose
of documenting asymmetry in conditional second moments also for fixed in-
come securities. As a second factor the growth rate of industrial production
is chosen. The approach followed here allows to distinguish between market
and intertemporal premia for each asset. The second factor turns out to

2"The information variables used are: 1) The dividend yield on the S&P 500 composite
equity index (source: S&P - DRI). 2) The stock market returns computed on the S&P
composite equity index (source: S&P - DRI). 3) The change in the default spread, defined
as Moody’s Baa minus Aaa long-term bond rate (source: Federal Reserve). 4) The term
premium, defined as the return on 10-year government bonds minus the 3-month T-
bill rate (source: CRSP). 5) The default premium, defined as the return on a portfolio
of low-grade corporate bonds less the return on a portfolio of long-term government
bonds (source for the low-grade corporate bond series: Ibbotson Corporate Bond Module
portfolio of bonds rated Baa or less by Moody’s Investor Services; Blume, Keim, and
Patel (1991); and Salomon Brothers. Source for long-term government bonds: Salomon
Brothers total return Treasury index). 6) and 7) The return on the 1-/3-month T-bill
(source: CRSP). 8) The 1-year Treasury bill yield (source: Federal Reserve).
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Figure 5: Smoothed probabilities with and without time-varying
Markov transition probabilities

ct. tr. pr.

— - — - -tv. tr. pr.

1.0

janv-60 janv-65 janv-70 janv-75 janv-80 janv-85 janv-90 janv-95

“ct. tr. pr.” stands for constant transition probabilities; “tv. tr. pr.” stands for
time-varying transition probabilities.

be significantly priced and relevant in the determination of the total premia
required to hold risky securities.

Engle and Ng (1993) tests for asymmetry show that the volatility of
the three assets as well as that of the second priced factor are sensitive
to the sign of past innovations. Moreover, the volatility of each variable
responds differently to past positive and/or negative shocks. Therefore two
multivariate GARCH processes able to capture the asymmetric effects for
both conditional variances and covariances are developed and tested. While
the generalized Nelson model is not robust to different sets of starting values
and numerical algorithms of optimization, the generalized GJR model seems
to fit the data well.

Major financial market turmoil as well as spillovers from one market to
another are reflected by the time path of risk premia. More importantly, as
evidenced by plots of the news impact curves and surfaces and confirmed
by robust conditional moment tests (Engle and Ng, 1993, and Kroner and
Ng, 1998), conditional second moments do respond asymmetrically to past
positive and/or negative news. Traditional GARCH models do not take
into account such asymmetric effects. Therefore, poor in- and out-of-sample
forecasts as well as misleading indications for portfolio selection, risk man-
agement, and pricing of primary and derivative securities can be the conse-
quence of this omission.
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Following Cappiello (1999), the prices of risk are first held constant and
next allowed to vary over time according to the regime switching model of
Hamilton (1988, 1989, 1990, 1994). Due to its better performance, the use
of Hamilton’s filter is combined only with the generalized GJR model. Two
regimes are identified, one in which the price of market risk is high and
the price of intertemporal risk is low, and one in which the reverse occurs,
i.e. the first price is high and the second low. This can be interpreted as
a switch in investors’ preferences whose degree of risk aversion increases in
correspondence to or after financial turmoil. The shift in agents’ preferences,
though, is accommodated at the cost of sacrificing flexibility in terms of the
GARCH specification. Thus, relevant phenomena, like the decrease in the
bond risk premia, which occurred after some equity market falls, are not
captured, whereas they are when prices are held constant.

Several directions for future research can be pursued.

Due to the partial equilibrium nature of Merton’s (1973) Intertemporal
CAPM, what pricing factors should be considered remain an open question
and further investigation is called for. Therefore, the results obtained here
choosing the growth rate of industrial production as second priced factor,
must be interpreted with caution.

In general, GARCH models, both symmetric and asymmetric, are sta-
tistical specifications designed to capture some empirical regularities typical
of financial time series. However, they lack economic content. A satisfac-
tory dynamic theoretical model able to explain the asymmetric responses of
a large spectrum of assets to past innovations is definitely called for. The
theories proposed by Black (1976) and Christie (1982), on one hand, and
Campbell and Hentschell (1992), on the other, though appropriate for equi-
ties, do not provide exhaustive explanations for (government) fixed income
securities.

Between the two multivariate GARCH processes developed in this re-
search, the generalized Nelson model does not seem to be suited for fixed
income securities. Therefore, it can be tested again with portfolios made of
equities only. This would allow to check whether, contrary to the results
reached in this paper, it is robust to different sets of starting values and
numerical algorithms of optimization and if it is stationary.

In the generalized GJR model the component which captures asymmetry
in second moments shows an abrupt transition from one volatility regime
to another. Instead of using the indicator function, a smooth transition
function could be employed in the spirit of Lubrano (1998), where the smooth
transition proved to be relevant in the empirical analysis.

As shown by Engle and Ng (1993), when portfolios of only equities are
considered, after a price drop, which triggers an increase in volatility, tra-
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ditional GARCH models underestimate the conditional variance. Similarly,
after a stock price rise, symmetric GARCH overestimate the conditional
volatility. Hence the poor forecasting performance of symmetric GARCH
processes and the need of asymmetric GARCH specifications. The problem
of poor in- and out-of-sample forecasting of traditional GARCH processes
has also been addressed in an alternative way. The estimation of con-
ventional GARCH models typically show very high persistence parameters
(close to one). Such a persistence has been judged spurious and caused by
structural shifts in the level of the conditional covariance not accounted for
by the econometrician (see Diebold, 1986, and Lamoureux and Lastrapes,
1990). The fact that traditional GARCH models overpredict the conditional
volatility at the time when it goes from a high state back to a low (or normal)
state, and similarly underpredict it when volatility changes from low to high
(or normal) states has been attributed to this high spurious persistence.
Among others, Cai (1994), Hamilton and Susmel (1994), Dueker (1997),
and Susmel (1998) capture the shifts in the conditional variance through
the regime switching model of Hamilton (1988, 1989, 1990, 1994). When
such shifts are taken into account, the persistence decreases and the fore-
casting performance improves. An interesting future project would compare
the two approaches, i.e. multivariate asymmetric versus switching GARCH
models and test which offers the best results in terms of forecasting.

Finally, note that Merton’s (1973) Intertemporal CAPM can be used as a
tool for asset allocation. The maximization process of any CAPM produces
optimal weights for the allocation of wealth among different asset classes.
The weights are a function of the lagged covariance matrix, prices of risk,
and expected excess returns. These three terms can be estimated through
Merton’s asset pricing theory. In addition, since a conditional version of
the model is considered, both first and second moments vary over time. As
a consequence, investors’ portfolios can be rebalanced as new information
becomes available.
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