
An Integrated Market and 
Credit Risk Portfolio Model
Ian Iscoe, Alex Kreinin and Dan Rosen

We present a multi-step model to measure portfolio credit risk that integrates 
exposure simulation and portfolio credit risk techniques. Thus, it overcomes the 
major limitation currently shared by portfolio models with derivatives. 
Specifically, the model is an improvement over current portfolio credit risk models 
in three main aspects. First, it defines explicitly the joint evolution of market 
factors and credit drivers over time. Second, it models directly stochastic 
exposures through simulation, as in counterparty credit exposure models. Finally, 
it extends the Merton model of default to multiple steps. The model is 
computationally efficient because it combines a Mark-to-Future framework of 
counterparty exposures and a conditional default probability framework.
Credit risk modeling is one of the most important 
topics in risk management and finance today. 
The last decade has seen the development of 
models for pricing credit risky instruments and 
derivatives, for assessing the credit worthiness of 
obligors, for managing exposures of derivatives 
and for computing portfolio credit losses for 
bonds and loan portfolios. In light of these 
financial innovations and modeling advances the 
Basle Committee on Banking Supervision has 
taken the first steps to amend current regulation 
and is reviewing the applicability of internal 
credit risk models for regulatory capital (Basle 
Committee on Banking Supervision, 1999a, 
1999b).

However, common practice still treats market 
and credit risk separately. When measuring 
market risk, credit risk is commonly not taken 
into account; when measuring portfolio credit 
risk, the market is assumed to be constant. The 
two risks are then “added” in ad hoc ways, 
resulting in an incomplete picture of risk.

There are two categories of credit risk 
measurement models: Counterparty Credit 

Exposure models and Portfolio Credit Risk 
models. 

Derivative desks traditionally manage credit risk 
by monitoring and placing limits on counterparty 
credit exposures. Counterparty exposure is the 
economic loss that will be incurred on all 
outstanding transactions if a counterparty 
defaults, unadjusted by possible future recoveries. 
Counterparty exposure models measure and 
aggregate the exposures of all transactions with a 
given counterparty. In the BIS regulatory model, 
potential exposures are given by an add-on factor 
multiplying the notional of each transaction 
(Basle Committee on Banking Supervision, 
1988). Although simple to implement, the model 
has been widely criticized because it does not 
accurately account for future exposures. Since 
exposures of derivatives such as swaps depend on 
the level of the market when default occurs, 
models must capture not only the actual 
exposure to a counterparty at the time of the 
analysis but also its potential future changes. 
Recently, more advanced methods based on 
Monte Carlo simulation (Aziz and Charupat 
1998) have been implemented by financial 
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institutions. By simulating counterparty 
portfolios through time over a wide range of 
scenarios, these models explicitly capture the 
contingency of the market on derivative 
portfolios and credit risk. Furthermore, they can 
accurately model natural offsets, netting, 
collateral and various mitigation techniques used 
in practice. 

Since their main focus is on risk at the 
counterparty level, counterparty credit risk 
models do not generally attempt to capture 
portfolio effects such as the correlation between 
counterparty defaults. In contrast, Portfolio 
Credit Risk (PCR) models measure credit 
capital and are specifically designed to capture 
portfolio effects, specifically obligor correlations. 
They include CreditMetrics (JP Morgan 1997), 
CreditRisk+ (Credit Suisse Financial Products 
1997), Credit Portfolio View (Wilson 1997a and 
1997b) and KMV’s Portfolio Manager (Kealhofer 
1996). Although superficially they appear quite 
different—the models differ in their 
distributional assumptions, restrictions, 
calibration and solution—Gordy (1998) and 
Koyluoglu and Hickman (1998) show an 
underlying mathematical equivalence among 
these models. However, empirical work shows 
generally that all PCR models yield similar results 
if the input data is consistent (Crouhy and Mark 
1998; Gordy 1998).

A major limitation of all current PCR models is 
the assumption that market risk factors, such as 
interest rates, are deterministic. Hence, they do 
not account for stochastic exposures. While this 
assumption has less consequence for portfolios of 
loans or floating rate instruments, it has great 
impact on derivatives such as swaps and options. 
Ultimately, a comprehensive framework requires 
the full integration of market and credit risk.

In this paper, we present a multi-step, stochastic 
model to measure portfolio credit risk that 
integrates exposure simulation and portfolio 
credit risk methods. Through the explicit 
modeling of stochastic exposures, the model 
overcomes the major limitation currently shared 
by portfolio models in accounting for the 
exposure caused by instruments with embedded 

derivatives. By combining a Mark-to-Future 
framework of counterparty exposures (see Aziz 
and Charupat 1998) and a conditional default 
probability framework (see Gordy 1998; 
Koyluoglu and Hickman 1998; Finger 1999), we 
minimize the number of scenarios where 
expensive portfolio valuations are calculated, and 
can apply advanced Monte Carlo or analytical 
techniques that take advantage of the problem 
structure.

We restrict this paper to a “default mode” model; 
that is, the model measures credit losses arising 
exclusively from the event of default. However, 
default mode models cannot account for deals 
that have direct contingency on migrations (e.g., 
credit trigger features) without further 
modifications. Although perhaps 
computationally intensive, it is not difficult to 
extend the model to account for migration losses. 
Note, however, that since credit migrations are 
actually changes in expectations of future 
defaults, a multi-step model captures migration 
losses indirectly. 

Specifically, the model presented in this paper is 
an improvement over current portfolio models in 
three main aspects:

• First, it defines explicitly the joint evolution 
of market risk factors and credit drivers. 
Market factors drive the prices of securities 
and credit drivers are non-idiosyncratic 
factors that drive the credit worthiness of 
obligors in the portfolio. Factors are general 
and can be microeconomic, macroeconomic, 
economic and financial.

• Second, it models directly stochastic 
exposures through simulation, as do the 
Counterparty Credit Exposure models. In 
this sense, it constitutes an integration of 
counterparty exposure and Portfolio Credit 
Risk models.

• Finally, it extends the Merton model of 
default (1974), as used, for example, in 
CreditMetrics, to multiple steps. It explicitly 
solves for multi-step thresholds and 
conditional default probabilities in a general 
simulation setting.
Market and credit model
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The rest of the paper is organized as follows. We 
begin by introducing a general framework for 
Portfolio Credit Risk Models. The framework is 
first illustrated through the commonly known 
single-step model with deterministic exposures. 
Next, we present the multi-step, stochastic 
model in two stages. First, we extend the single–
step model with deterministic exposures to 
account for stochastic exposures, and second, we 
extend that model to a multi-step version. The 
paper closes with some concluding remarks and 
outline of future work. 

Framework for Portfolio Credit Risk models

Current portfolio models fit within a generalized 
underlying modeling framework. Gordy (1998) 
and Koyluoglu and Hickman (1998) first 
introduced the framework to facilitate the 
comparison between the various models. Finger 
(1999) further points out that formulating the 
models in this framework permits the use of 
powerful numerical tools known in probability 
that can improve computational performance by 
dramatically reducing the number of scenarios 
required. The main idea behind the framework is 
that conditional on a scenario all defaults and 
rating changes are independent. A state-of-the-
world is a complete specification at a point in 
time of the relevant economic and financial 
credit drivers and market factors 
(macroeconomic, microeconomic, financial, 
industrial, etc.) that drive the model. A scenario 
is defined by a set of states-of-the-world over 
time. In a single-period model there is a direct 
correspondence between a state-of-the-world 
and a scenario; in a multi-period model a 
scenario corresponds to a path of states-of-the-
world over time. 

In this section, we introduce the basic 
components of the framework, which we 
subsequently use to present various models. We 
make several steps explicit in the framework, 
which were previously implicit in the original 
presentations. This further specification permits 
us to present the models in a manner that better 
explains the assumptions made and allows us to 
address the generalizations of the model.

The framework consists of five parts:

• Part 1: Risk factors and scenarios. This is a 
model of the evolution of the relevant 
systemic risk factors over the analysis period. 
These factors may include both credit drivers 
and market factors.

• Part 2: Joint default model. Default and 
migration probabilities vary as a result of 
changing economic conditions. An obligor’s 
probabilities are conditioned on the scenario 
at each point in time. The relationship 
between its conditional probabilities and the 
scenario is obtained through an intermediate 
variable, called the obligor’s credit 
worthiness index. Correlations among 
obligors are determined by the joint variation 
of conditional probabilities across scenarios. 

• Part 3: Obligor exposures, recoveries and 

losses in a scenario. The amount that will be 
lost if a credit event occurs (default or 
migration) as well as potential recoveries are 
computed under each scenario. Based on the 
level of the market factors in a scenario at 
each point in time, Mark-to-Future (MtF) 
exposures for each counterparty are obtained 
accounting for netting, mitigation and 
collateral. Similarly, recovery rates in the 
event of default can be state dependent.

• Part 4: Conditional portfolio loss 

distribution in a scenario. Conditional upon 
a scenario, obligor defaults are independent. 
Various techniques based on the property of 
independence of obligor defaults can be 
applied to obtain the conditional portfolio 
loss distribution.

• Part 5: Aggregation of losses in all 

scenarios. Finally, the unconditional 
distribution of portfolio credit losses is 
obtained by averaging the conditional loss 
distributions over all possible scenarios.

We illustrate the framework with a single time 
step Portfolio Credit Risk model with 
deterministic exposures, PCR_SD. Common 
notation and key concepts are also introduced. 
Market and credit model
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Next, the model is extended to allow for 
stochastic exposures in a single-step setting, 
PCR_SS. Finally, we present a third model, 
PCR_MS, which allows for multiple time steps 
and stochastic exposures. 

A set of four tables (Appendix 1) summarize the 
features of the models and highlight the 
similarities and differences of the models 
presented here. Table A1 presents a summary of 
the features of the three PCR models. Table A2 
summarizes definitions of the risk factors and 
scenarios in Part 1 of the framework. Table A3 
summarizes the components of the joint default 
model of Part 2. Table A4 summarizes the 
calculations for conditional obligor losses, 
conditional portfolio losses and unconditional 
losses of Parts 3 to 5 of the framework. 

PCR_SD - Single-step with deterministic 
exposures

The first model, PCR_SD, measures single-step 
portfolio credit losses with deterministic obligor 
exposures and recovery rates. This is a two-state 
form of the CreditMetrics model. We consider a 
default mode model, where default is driven by a 
Merton model.

Consider a portfolio with N obligors or accounts. 
Each obligor belongs to one of Ns < N sectors. 
We assume that obligors in a sector are 
statistically identical. The grouping of obligors 
into sectors facilitates the estimation and 
solution of the problem.

Part 1. Risk factors and scenarios

Consider the single period [t0, t] where, generally, 
t = 1 year. In this single period model a scenario 
corresponds to a state-of-the-world. At the end 
of the horizon, t, the scenario is defined by qc 
systemic factors, the credit drivers, which 
influence the credit worthiness of the obligors in 
the portfolio. 

Denote by x(t) the vector of factor returns at 
time t; i.e., x(t) has components 
xk(t) = ln{rk(t)/rk(t0)}, where rk(t) is the value of 
the k-th factor at time t. Assume that at the 
horizon the returns are normally distributed: 
x(t) ~ N(µ, Q), where µ is a vector of mean 

returns and Q is a covariance matrix. Denote by 
Z(t), the vector of normalized factor returns; i.e.,
Zk(t) = (xk(t) – µk) / σk. For ease of exposition, 
and without loss of generality, assume that the 
factor returns are independent; independent 
factors can always be obtained, for example, by 
applying Principal Component Analysis to the 
original economic factors.

Part 2. Joint default model

The joint default model consists of three 
components. First, the definition of 
unconditional default probabilities. Second, the 
definition of a credit worthiness index for each 
obligor and the estimation of a multi-factor 
model that links the index to the credit drivers. 
Finally, a model of obligor default, which links 
the credit worthiness index to the probabilities of 
default, is used to obtain conditional default 
probabilities. Below, we explain these 
components in more detail.

Denote by τj the time of default of obligor j, and 
by pj(t) its unconditional probability of default, 
the probability of default of an obligor in sector j 
by time t:

 (1)

Note that all obligors in sector j have the same 
unconditional probability of default. We assume 
that unconditional probabilities for each sector 
are available from an internal model or from an 
external agency. 

The credit worthiness index, Yj, of obligor j 
determines the credit worthiness or financial 
health of that obligor at time t. Whether an 
obligor is in default can be determined by 
considering the value of its index. We assume 
that Yj, a continuous variable, is related to the 
credit drivers through a linear, multi-factor 
model:

 (2)

where 

pj t( ) Pr τj t≤{ }=

Y
j
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Z
k
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ε
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is the volatility of the idiosyncratic component 
associated with sector j, βjk is the sensitivity of 
the index of obligor j to the k-th factor and εj, 
j = 1, 2,..., N, are independent and identically 
distributed standard normal variables. Thus, the 
first term on the right side of Equation 2 is the 
systemic component of the index while the 
second term is the specific, or idiosyncratic, 
component. Note that the distribution of the 
index is standard normal; it has zero mean and 
unit variance. 

Since all obligors in a sector are statistically 
identical, obligors in a given sector share the 
same multi-factor model. However, while all 
obligors in a sector share the same βjk and σj, 
each has its own idiosyncratic, uncorrelated 
component, εj. 

The conditional probability of default of an 
obligor in sector j, pj(t; Z), is the probability that 
an obligor in sector j defaults at time t, 
conditional on scenario Z: 

 (3)

The estimation of conditional probabilities 
requires a conditional default model which 
describes the functional relationship between the 
credit worthiness index Yj (and hence the 
systemic factors) and the default probabilities pj. 

We assume that default is driven by a Merton 
model (Merton 1974). In the Merton model 
(Figure 1), default occurs when the assets of the 
firm fall below a given boundary or threshold, 
generally given by its liabilities. We consider that 
an obligor defaults when its credit worthiness 
index, Yj, falls below a pre-specified threshold 
estimated from historical data. In this setting, an 
obligor’s credit worthiness index, Yj, can be 
interpreted as the standardized return of its asset 
levels. Default occurs when this index falls below 
αj, the unconditional default threshold.

From an econometrics perspective, the Merton 
model is referred to as a probit model. It is 
conceptually straightforward to substitute a 

different default model, such as a logit model, as 

presented in Wilson (1997a, 1997b). 

 Figure 1: Merton model of default

The first step in the model defines the 

unconditional default threshold, αj, for each 

obligor. The second step calculates the 

conditional default probabilities in each scenario.

The unconditional default probability of obligor j 

is given by

 (4)

where Φ denotes the normal cumulative density 

function. For simplicity, we have dropped the 

dependence on time, t, from the notation.Thus, 

the unconditional threshold, αj, is obtained by 

the inverse of Equation 4:

 (5)

The conditional probability of default is then the 

probability that the credit worthiness index falls 

below the threshold in a given scenario:

 (6)
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The conditional threshold, , is the 
threshold that the idiosyncratic component of 
obligor j, εj, must fall below for default to occur in 
scenario Z.

Note that obligor credit worthiness index 
correlations are uniquely determined by the 
default model and the multi-factor model, which 
links the index to the credit driver returns. The 
correlations between obligor defaults are then 
obtained from the functional relationship 
between the index and the event of default, as 
determined by the Merton model. For example, 
the indices of obligors that belong to the same 
sector are perfectly correlated if their 
idiosyncratic component is zero.

Part 3. Obligor exposures and recoveries in a 
scenario

Define the exposure to an obligor j at time t, Vj, 
as the amount that will be lost due to 
outstanding transactions with that obligor if 
default occurs, unadjusted for future recoveries. 
An important property of PCR_SD is the 
assumption that obligor exposure is 
deterministic, not scenario dependent: 

. 

The economic loss if obligor j defaults in any 
scenario is

 (7)

where γj is the recovery rate, expressed as a 
fraction of the obligor exposure. Recovery, in the 
event of default, is also assumed to be 

deterministic. (Expressing the recovery amount 
as a fraction of the exposure value at default does 
not necessarily imply instantaneous recovery of a 
fraction of the exposure when default occurs.)

The distribution of conditional losses for each 
obligor is given by

 (8)

Part 4. Conditional portfolio loss distribution in a 
scenario

Conditional on a scenario, Z, obligor defaults are 
independent. This follows from Equation 6 and 
the assumption that the idiosyncratic 
components of the indices are independent. To 
determine whether an obligor default occurs in a 
scenario, all that remains to be sampled is its 
idiosyncratic component.

In practice, the computation of conditional losses 
can be onerous. In the most general case, a 
Monte Carlo simulation can be applied to 
determine portfolio conditional losses. However, 
the observation that obligor defaults are 
independent permits the application of more 
effective computational tools. Some of these 
techniques are described in Credit Suisse (1997), 
Finger (1999) and Nagpal and Bahar (1999). 

For the purpose of exposition only, consider a 
portfolio with a very large number of obligors, 
each with a small marginal contribution. In this 
case, we can use the Law of Large Numbers 
(LLN) to estimate conditional portfolio losses. 
As the number of obligors approaches infinity, 
the conditional loss distribution converges to the 
mean loss over that scenario; the conditional 
variance and higher moments become negligible. 
Hence, the conditional portfolio losses, L(Z), are 
given by sum of the expected losses of each 
obligor:

 (9)

Assuming that the LLN is appropriate simplifies 
the presentation which permits us to focus this 
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discussion on the differences and similarities 
among the PCR_SD model and the stochastic 
and multi-step models that follow. Other 
methods include the application of the Central 
Limit Theorem (which assumes the number of 
obligors is large, but not necessarily as large as 
that required for the LLN), the application of 
moment generating functions with numerical 
integration or the application of probability 
generating functions with a discretization of 
exposures.

Part 5. Aggregation of losses in all scenarios 

Unconditional portfolio losses are obtained by 
averaging the conditional losses over all 
scenarios. The distribution of unconditional 
portfolio losses is given by

 (10)

where LP denotes the unconditional portfolio 
losses, λ denotes the level of losses and F(Z) is 
the distribution of Z.

The aggregation of losses is generally obtained by 
performing a Monte Carlo simulation on the risk 
factor returns. Alternatively, analytical solutions 
are available under some restrictions (see Nagpal 
and Bahar (1999)).

The first column of Table A1 (Appendix 1) 
summarizes the features of the PCR_SD model. 
In the first columns of Tables A2 to A4, we 
summarize the components of the PCR_SD 
model associated with the framework. 

PCR_SS – Single-step model with 
stochastic exposures

The second model developed in this paper 
relaxes the assumption of deterministic exposures 
and recoveries of the previous model. The 
PCR_SS model measures single-step portfolio 
credit losses due to default and assumes that 
obligor exposures and recoveries are stochastic.

Part 1. Risk factors and scenarios

The definition of risk factors and scenarios is 
similar to that in the PCR_SD model, with the 
difference that now a set of market factors are 

introduced which are determinant in the 
calculations of credit exposures.

Consider the single period [t0, t]. At the end of 
the horizon, t, the scenario is now defined by q 
factors of which qm are market factors and 
qc = q – qm are credit drivers (this separation is 
for ease of exposition only and in no way restricts 
the model). 

Denote by x(t) the vector of factor returns at 
time t. In general, we use the superscript m to 
denote quantities related to market factors and 
the superscript c to denote those related to credit 
drivers. Thus, xm and xc denote the factor returns 
of the market factors and credit drivers, 
respectively. The first qm components of x(t) 
correspond to xm and the following qc 
components to xc. 

Assume that both credit driver and market factor 
returns are normally distributed: x(t) ~ N(µ, Q). 
Denote by Z(t) the vector of normalized credit 
driver returns; i.e., . As 
in the PCR_SD model, assume that the 
components of Z are independent. Note that 
normalized, independent returns are required for 
the credit drivers only; the returns of the market 
factors can follow more general models.

A scenario is described by an outcome of the 
returns vector x, or equivalently by a joint 
outcome of the vectors xm and Z.

Part 2. Joint default model

The joint default model of PCR_SS is identical to 
that of PCR_SD. Conditional default 
probabilities are as given by Equation 6. In the 
PCR_SS model, the vector Z contains only the 
standardized returns of the credit drivers, Zk(t).

Part 3. Obligor exposures and recoveries in a 
scenario

The main difference between the PCR_SS model 
and the previous deterministic model is that in 
this model obligor exposures are stochastic. The 
exposure to obligor j at time t, Vj(x

m), varies by 
scenario as a function of the market risk factors; 
i.e., Vj = f(xm) (the index t is dropped for 
simplicity). 

Pr L
P

λ<{ } Pr L Z( ) λ<{ } F Z( )d

Z

�=

Zk t( ) xk
c
t( ) µk

c
t( )–( ) σk(t)⁄=
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Exposure for each obligor is obtained through a 
single-step MtF simulation of all outstanding 
transactions, accounting for all netting 
agreements, mitigation and collateral. We refer to 
the table of obligor exposures by scenario, Vj(x

m), 
as the Exposure MtF Table.

We further allow for recoveries in the event of 
default, γj, to be stochastic. The economic loss 
incurred if obligor j defaults in a given scenario is 

 (11)

Because it is difficult to estimate the correlations, 
it is common to assume that recoveries are 
independent of the risk factors.

The table of obligor conditional losses by 
scenario, Lj(x

m,Z) is referred to as the Obligor 
Losses MtF Table.

The loss distribution for each obligor is then

 (12)

Part 4. Conditional portfolio loss distribution in a 
scenario

As in the PCR_SD model, obligor defaults are 
independent conditional on a scenario Z. The 
main difference, of course, is that the exposures 
and recoveries are now also a function of the 
scenario. Thus, if the portfolio contains a very 
large number of obligors, each with a small 
marginal contribution, the LLN dictates that 
conditional portfolio losses converge to the sum 
of the expected losses of each obligor:

 (13)

Part 5. Aggregation of losses in all scenarios 

Unconditional portfolio losses are obtained by 
averaging the conditional losses over all 
scenarios:

 (14)

where  is the joint distribution of the 
market risk factors and credit drivers. This 
integral is generally computed using a Monte 
Carlo simulation.

The second column of Table A1 (Appendix 1) 
summarizes the features of the PCR_SS model. 
In the second columns of Tables A2 to A4 we 
summarize the components of the PCR_SS 
model associated with the framework. 

PCR_MS – Multiple-step model with 
stochastic exposures

The previous single-step, stochastic model, 
PCR_SS, is now extended to a multi-step setting. 
Model PCR_MS measures multi-step portfolio 
credit losses due to default and assumes that 
obligor exposures and recoveries are stochastic. 
Default is driven by a multi-step extension of a 
Merton model.

In this section, the full derivation of the discrete 
time model is presented. Appendix 2 introduces 
the problem of determining the credit worthiness 
process for the continuous time analog. The 
resolution of this problem will be addressed in 
future work. 

Part 1. Risk factors and scenarios

Assume M multiple discrete time steps during 
the period [to, T]: . A 
state-of-the-world at each time ti is defined by a 
realization of q factors, out of which qm are 
market factors and qc credit drivers, respectively. 

Denote by r(ti) the vector of risk factor values at 
time ti and by x(ti) the vector of factor returns 
from time t0 to ti; i.e., x(ti) has components 
xk(ti) = ln{rk(ti)/rk(t0)}, where rk(ti) is the value 
of the k-th factor at time ti. Again, xm and xc 
denote the factor returns of the market factors 
and credit drivers, respectively. 

We assume that the evolution of the vector of 
risk factor values over time is determined by a set 
of stochastic differential equations:
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 (15)

where µk denotes the instantaneous drift of 
factor k and , l = 1,2,...,q, are uncorrelated 
Wiener processes. The matrix σ = (σkl) is such 
that σσT forms an instantaneous covariance 
matrix. In general, the parameters of the 
stochastic differential equation can be functions 
of both time and risk factors.

More specifically, assume that the credit driver 
returns follow an arithmetic Brownian motion 
with constant coefficients:

 (16)

No additional assumptions are made concerning 
the process for the market risk factors; the 
process for the market risk factors is as defined in 
Equation 15.

A scenario, in the discrete time setting, is then 
described by an outcome of the return vectors 
x(ti), i = 1,..., M, (or, equivalently, by a joint 
outcome of the vectors rm and rc). Thus, in the 
multi-step model, a scenario is a path of states-
of-the-world over time, i.e., a scenario is defined 
as x = {x(ti), i = 1,..., M}.

Part 2. Joint default model

The joint default model consists of three 
components: unconditional default probabilities 
and thresholds, a multi-factor model for the 
credit worthiness index of each obligor and a 
default model. 

In the discrete time setting, the time of default of 
obligor j, τj, can take values ti, i = 1,..., M. The 
unconditional probability of default at time ti, 
pj(ti), is the probability that default of obligor j 
occurs in the i-th time step:

 (17)

Denote by Pj(tn) the unconditional cumulative 

probability of default of an obligor in sector j by 
time tn:

 (18)

Unconditional default probability term structures 
for each sector are an input to the model. They 
may be estimated from an internal model, from 
an external agency, or inferred from one period 
unconditional transition matrices, assuming a 
Markovian process.

In the development of the single-step models we 
noted that an obligor’s credit worthiness index, 
Yj, can be interpreted as the single-step 
standardized return of its asset levels. In the 
multi-step model the credit worthiness index of 
each obligor evolves through time. For a given 
obligor j, Aj(ti) is the level of the index. The 
return of the index up to time ti is yj(ti); i.e., 
yj(ti) = ln{Aj(ti)/Aj(t0). Finally, Yj(ti) is the 
standardized return on the index 

 (19)

where µj(ti) and σj(ti) are respectively the mean 
and volatility of the index returns. Yj(ti) has zero 
mean and unit volatility at every time step and is 
thus a canonical process. A canonical process is 
the process equivalent of a standard normal 
variable. In addition, we define the single period 
index returns:

and 

where  and  and  are the 
mean and volatility of the single period returns. 

We assume that the index is related to the 
scenario through a continuous multi-factor 
model. The model for each obligor j is given by

 (20)
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where βjk is the sensitivity of the index to the 
k-th credit driver; dwj, j = 1,..., N, are 
independent Wiener processes and σj is the 
volatility of the j-th idiosyncratic component. 
The canonical process Yj(t) can be derived from 
Equations 19 and 20. This process is the 
continuous analog to the single-step multi-factor 
model in Equation 2, except that the latter is 
standardized while the former is not. 

In discrete time, the solution of Equation 20 can 
be written as

 (21)

where εi are independent and identically 
distributed standard normal variables and 

. For ease of exposition we restrict 
attention to the case of uniform time steps, 

. 

Therefore, yj is a stationary, independent-

increments process and thus , 

 and  (since 

). Note that the random 

variables  are 

independent, identically distributed and normal 
with zero mean and unit variance. 

For the default model, we assume a multi-step 
Merton model. Default occurs in the first time 
step i that the index of the firm falls below the 
unconditional default threshold, αji = αj(ti). 
The prescription of the model proceeds in two 
steps. The first step in the model defines the 
unconditional default thresholds for each obligor, 
αji. The second step calculates the conditional 
default probabilities in each scenario.

In the discrete, multi-step model, the time of 
default τj is the first time the credit worthiness 
index falls below the unconditional threshold: 

Thus, the probability that default occurs in time 
step n is the probability that the index falls below 
the threshold in time step n and exceeds the 
threshold in each preceding period: 

The calculation of the threshold for obligor j in 
the first time step, t1, is similar to that of the 
single-step models. As given in Equation 4, the 
single-step unconditional probability of default is 
the cumulative normal of the unconditional 
threshold. More formally, we can also write the 
probability of default in the first time step as

 (22)

where 

The threshold αj1 is the standard normal 
quantile associated with the unconditional 
probability appearing on the left side of 
Equation 22: 

 (23)

Note the similarity between Equation 23 and 
Equation 5.

The probability that default occurs in the second 
time step, t2, can be written as

 (24)
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where . Default does not occur in the 
first time step, thus the limits of integration are 

; default must occur in the second time 
step, thus the limits of integration are . 

The unconditional threshold for the second time 
step, αj2, is defined implicitly in Equation 24 
from the probability pj(t2) and the t1-threshold 
αj1. 

More generally, for any time step n, the threshold 
αjn is determined implicitly from the default 
probabilities and the thresholds at all previous 
time steps:

 (25)

where . 

Given the cumulative default probability curve 
for each sector, thresholds can be computed 
using a Monte Carlo method which solves 
recursively for the limits of the integrals in 
Equation 25.

We define the conditional probability of 
default, pj(tn;x

c), as the probability that default of 
an obligor in sector j occurs in the n-th time step 
conditional on the realization of the credit 
drivers up to time tn:

 (26)

The computation of the conditional default 
probabilities is as follows: for the first time step, 
the conditional probability of default is, as in the 
previous models, given by

 (27)

The threshold, adjusted by the drift and volatility 
of the index returns, is . 
Note that Equation 27 is equivalent to 
Equation 6.

For the second time step, the conditional 
probability is given by

Then, in general, for time step n
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 (29)

The right side of Equation 29 can be computed 
using numerical integration. Details of the 
computation of the multi-step conditional 
default probabilities are presented in Appendix 3. 

Part 3. Obligor exposures and recoveries in a 
scenario

As in the single-step stochastic model, PCR_SS, 
obligor exposures are stochastic. However, in this 
model, the exposure to obligor j is dependent on 
the path of the market risk factors up to time ti, 

. Since 
exposures at various times are summed, each is 
already discounted to today. Thus, discounted 
exposures express the capital that must be held 
today to cover future defaults (unadjusted for 
recoveries). 

Exposures for each obligor are obtained through 
a multi-step simulation of all outstanding 
transactions, accounting for all netting 
agreements, mitigation and collateral. Aziz and 
Charupat (1998) present examples of the 
computation of these exposures. The table of 
obligor exposures over every scenario, Vj(x

m, ti) is 
referred to as the Multi-step Exposure MtF Table. 

The economic loss if obligor j defaults in time 
step i, is the exposure of obligor j at time step i, 
net of recoveries, where it is also assumed that 
recoveries in the event of default, γji, are 
stochastic:

 (30)

The probability of this default is pj(ti,x
c). Thus, 

for every time step i, the distribution of 
conditional obligor losses is given by

 (31)

The table of conditional obligor losses, Lji(x), is 
referred to as the Multi-step MtF Table of 
Obligor Losses.

Part 4. Conditional portfolio loss distribution in a 
scenario

At each time step, obligor defaults are 
independent, conditional on a scenario. The 
losses in a given scenario are simply the sum of 
the losses at each time step in that scenario.

If the portfolio contains a very large number of 
obligors, each with a small marginal contribution, 
the LLN dictates that conditional portfolio losses 
at each time step converge to the sum of the 
expected losses of each obligor:

 (32)

Expected portfolio losses in a given scenario are 
the sum of the expected losses in each time step:

 (33)

Part 5. Aggregation of losses in all scenarios 

Unconditional portfolio losses are obtained by 
averaging the conditional losses over all 
scenarios:

 (34)

where  is the probability distribution in the 
scenario space. This integral is generally 
computed using Monte Carlo techniques. 

The third column of Table A1 (Appendix 1) 
summarizes the features of the PCR_MS model. 
In the third columns of Tables A2 to A4 we 
summarize the components of the PCR_MS 
model associated with the framework. 

Concluding remarks

We have presented a new multi-step Portfolio 
Credit Risk model that integrates exposure 
simulation and advanced portfolio credit risk 
methods. The integrated model, PCR_MS, 
overcomes a major limitation currently shared by 
portfolio models in accounting for the credit risk 
of portfolios whose exposures depend on the level 
of the market.
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Specifically, the model presented in this paper is 
an improvement over current portfolio models in 
three main aspects. First, it defines explicitly the 
joint evolution over time of market risk factors 
and credit drivers. Second, it models directly 
stochastic exposures through simulation, as in 
Counterparty Credit Exposure models. Finally, it 
extends the Merton model of default to multiple 
steps. Although the latter seems conceptually 
straightforward, the resulting mathematical 
model is not trivial. Moreover, expressing the 
model so that it is amenable to an efficient 
solution is essential. 

The model is computationally efficient because it 
combines a Mark-to-Future (MtF) framework of 
counterparty exposures and a conditional default 
probability framework. The computational 
benefits are threefold:

• First, the number of scenarios for which 
expensive portfolio valuations are made is 
minimized. 

• Second, the model is based on the same 
computations used for monitoring 
counterparty exposures and placing limits at 
the desks. A MtF framework allows users to 
exploit these computations and use them for 
both counterparty exposures and portfolio 
credit risk. This is not only important for 
computational purposes, but also leads to 
more consistent enterprise risk 
measurement.

• Third, advanced Monte Carlo or analytical 
techniques that take advantage of the 
problem structure can be used to solve the 
problem faster and more accurately than 
standard Monte Carlo methods.

We have restricted this paper to a default mode 
model. It is not conceptually difficult to extend 
the model to account for migration losses as well. 
Note that since credit migrations are simply 
changes in expectations of future defaults, a 
multi-step model partially and indirectly captures 
migration losses. Future work will address these 
issues in detail.
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Appendix 1. Model summary tables

This appendix contains tables summarizing the 
three models presented.

PCR_SD PCR_SS PCR_MS

Time steps single-step single-step multi-step

Exposures and
recoveries

deterministic stochastic stochastic

Credit events default default default

Default model Merton Merton Merton

Simulation
factors

credit drivers credit drivers
market factors

credit drivers
market factors

Factor
distributions

credit drivers: standardized
normal returns

credit drivers: standardized
normal returns

market factors: normal
returns

credit drivers: normal returns

market factors: general

Input data (unconditional) one year
default probabilities for each
obligor/sector

unconditional threshold

(unconditional) one year
default probabilities for
each obligor/sector

unconditional threshold

term structure of (unconditional)
default probabilities for each
obligor/sector

unconditional thresholds

Output results Exposure MtF Table

Obligor Losses MtF Table

Exposure MtF Table

Obligor Losses MtF Table

Multi-step Exposure MtF Table

Multi-step MtF Table of Obligor
Losses

 Table A1: Feature summary of Portfolio Credit Risk models

PCR_SD PCR_SS PCR_MS

Credit risk
factors

credit driver returns;
standardized normal
Zk (t)~ N(0,1)

credit driver returns; 

standardized normal

Zk (t)~ N(0,1)

Equation 16 credit driver returns; 

normal

Market risk
factors

not applicable market factor returns; normal

xm(t) ~ N(µ, Q)

Equation 15 market factor returns;
general

Scenarios single-step single-step multi-step

 Table A2: Part 1 – Definition of risk factors and scenarios
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Table A4: Parts 3, 4 and 5 – Obligor exposure, recovery and losses
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Market and credit model
Appendix 2. The canonical credit 
worthiness process

Consider a single obligor. The canonical credit 
worthiness process, Y(t), is described by 

where wt is a one-dimensional Wiener process. In 
the continuous time Merton model, the time of 
default τ is the first time when the process falls 
below a boundary :

Let the function P(t), with  for all 

t > 0 and , represent the probability of 

default before time T; i.e., 

This continuous time problem is depicted in 
Figure A1.

 Figure A1: Continuous time default model

Appendix 3. Computation of multi-step 
conditional default probabilities

In general, for time step n, the conditional 
default probabilities of a given obligor are given 
by Equations 28 and 29:

where

For simplicity, the index j, denoting a given 

obligor, is removed from the notation.

Denote by

and

Then it follows that

The probability  is a function of n 

variables, Gn(u1,..., un). The function 

Gn(u1,..., un) satisfies the relation

 (A1)

where . The 

integrals in Equation A1 are evaluated using 

numerical integration techniques. 
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