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I
f we are to make practical use of VaR
estimates and bet real money on them,
we would like to know whether they are
precise enough to rely on. But how can

we assess the accuracy of our VaR estimates?

THEORY

The answer depends, in part, on the
approach we use to estimate the VaR itself.1

Perhaps the most popular approach is para-
metric — we specify the distribution of
profit/loss (or returns) and use this to infer the
VaR. Of the distributions we can choose, the
most widely used is the normal distribution.2

Yet we know surprisingly little even
about the distribution of normal VaR esti-
mates, let alone about the distribution of non-
normal ones. Going back to first principles, we
know that normal VaR is given by:

VaR = –ασ – µ (1) 

where α is a parameter reflecting the confi-
dence level on which our VaR is predicated
(e.g., so α = –1.645 if our VaR is predicated
on the 95% confidence level, and so on), µ is
the mean profit/loss, and σ is the standard
deviation of profit/loss. Our estimate of nor-
mal VaR is then obtained by replacing µ and
σ — which are unknown — with their esti-
mates x

_
and s:

VaRe = –αs – x
_

(2)

In the special case where µ is taken to
be some particular deterministic value (e.g.,
zero), we can invoke statistical theory to con-
struct a confidence interval for s, and then
derive the VaR confidence interval by multi-
plying our s-confidence interval by –α and
subtracting a constant µ, which is assumed to
be known.3

However, µ is seldom known, if ever,
so our VaR estimate will usually depend on
two stochastic variables (i.e., x

_
and s) rather

than one. Unfortunately, in their classic sta-
tistical reference, Kendall and Stuart [1973, p.
132] describe the construction of analytic
confidence intervals for this more general case
as involving “very considerable difficulty”
(i.e., nearly impossible). 

If we cannot derive analytic expres-
sions for VaR confidence intervals, we have lit-
tle alternative but to resort to simulation.
Fortunately, this is very easy to carry out. Our
VaR is the sum of two unknown constant
terms (i.e., σ times –α, and  –µ), and we con-
struct a confidence distribution for VaR by
simulating each of these terms using the
information we have. This information con-
sists of our estimates s and x

_
, and our knowl-

edge of their distributions: If we have a sample
size of n, statistical theory tells us that: 

(n – 1)s2/σ2 ~ χ2
n–1

and
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x
_ 

~ N(µ, σ2/n) (3)

After a little rearranging, we can therefore treat σ2,
σ and µ “as if ” they were distributed as:

and

(4)

Substituting into (1), we then obtain our “confi-
dence distribution” for VaR:

VaR confidence distribution =

(5)

We can now simulate this distribution using the
appropriate software and read off the confidence intervals
from the quantiles of the simulated distribution. 

SIMULATION FINDINGS

For the sake of illustration, I choose a 95% confi-
dence interval, so the lower bound of the confidence
interval is the 2.5% quantile of the simulated distribution
and the upper bound is the 97.5% quantile. The actual
simulation exercise consists of 10,000 simulations of the
Latin hypercube routine in @Risk. (Latin hypercube
routines are more accurate than conventional Monte
Carlo simulation (Palisade [1997, pp. 257-258]).) 

This exercise produced a series of histograms that
simulate Equation (5), and we are particularly interested
in the mean of this histogram and its 2.5% and 97.5%
quantiles. The mean can be regarded as an estimate of the
unknown “true” VaR, and the two quantiles can be
regarded as estimates of the lower and upper bounds of the
95% confidence interval. Simulations were run for a range
of (annualized) values for sample mean and sample stan-
dard deviation, with the former ranging from 0.1 to 0.3
and the latter from 0.1 to 0.4. These ranges are plausible
empirically, and should give some indication of the sen-
sitivity of results to sample values. The simulations are also
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carried out using sample size (n) values ranging from 10
(i.e., extremely low) to 10,000 (extremely high). This
range enables us to gauge the effect of sample size on our
results; however, in practice, we would usually deal with
n values in the smaller range from perhaps 100 to 1,000. 

Finally, simulations were carried out with VaRs
predicated on the 95% and 99% confidence levels, and on
one-day and ten-day holding periods.4

These simulation exercises give us results for the
mean VaR, and for the lower and upper bounds of the
VaR confidence interval:

• The means of the simulated distributions suggest that
the conventional VaR estimate (1) suffers from a
slight downward bias, but this bias gets smaller as the
sample size increases. Thus, when n = 100, the bias
is almost always less than 1% of the “true” VaR;
when n = 500, the bias is around 0.2% of true VaR,
and when n = 1,000, the bias is around 0.1% of
VaR. For reasonable sample sizes, we can therefore
regard the standard estimator (2) as having a negligi-
ble bias.  

• The lower boundary for the confidence interval pri-
marily depends on the sample size n, and gradually
moves toward 1 as n gets bigger. To give a typical
example, if x

_
= 0.2 and s = 0.2, the lower confidence

level for the VaR (at the 95% confidence level and the
one-day holding period) is 0.829 when n = 100,
0.917 when n = 500, and 0.943 when n = 1,000.
Other things (e.g., n) being equal, the lower bounds
for the confidence level usually move further away
from the mean VaR as x

_
gets bigger, but do not seem

to depend in any noticeable way on s. In addition, the
lower bound usually moves further away from the
mean VaR as the holding period rises. However,
these effects are fairly small and, even where most pro-
nounced, are still small relative to the effects of sam-
ple size.

• The results for the upper bound of the confidence
interval broadly reflect those for the lower bound: The
upper bound depends mainly on n, and moves toward
the mean VaR as n rises and, other things being
equal, the upper bound usually moves away from the
mean as x

_
and the holding period each rise. However,

these latter effects are again still small relative to the
effects of sample size.

Thus, the width of the confidence interval depends
mostly on the sample size, n, and gets smaller as n gets
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larger. In the earlier example with x
_

and s both equal to
0.2, the confidence interval for the VaR at the 95% con-
fidence level and one-day holding period is [0.765, 1.329]
if n = 50, [0.829, 1.218] if n = 100, [0.917, 1.09] if n =
500, and [0.943, 1.061] if n = 1,000.5

Put another way, a sample size of 50 produces a
confidence interval that is roughly our VaR estimate plus
or minus 30%; a sample size of 100 produces a confidence
interval roughly equal to our estimated VaR plus or minus
20%; n = 500 produces a confidence interval equal to our
VaR estimate plus or minus 9%; and n = 1,000 produces
a confidence interval equal to our estimated VaR plus or
minus 6%. The degree of accuracy of our estimate of VaR
depends critically on the size of our sample.

CONCLUSIONS

It is very easy to use simulation methods to con-
struct confidence intervals for normal VaRs, and the
approach suggested here is particularly useful when closed-
form solutions for these confidence intervals are lacking
(i.e., when we wish to take account of random estimates
of both the mean and standard deviation of profit/loss or
returns). The simulation results suggest that normal esti-
mates of VaR have fairly wide  confidence intervals, but
also suggest that the key factor behind the width of these
confidence intervals is sample size. The clear implication
is that practitioners need a lot of data if they are to get tight
confidence intervals around their VaR estimates. 

This approach is straightforward to implement, so
those who want more specific estimates of confidence
intervals can easily generate them for themselves. More-
over, and more importantly, the same methodology can
also be adapted to derive confidence intervals for non-nor-
mal VaRs as well. 

ENDNOTES

The author thanks Dave Chappell of Sheffield Uni-
versity for helpful advice.

1When VaR is estimated by historical simulation, we
should resort to historical kernel methods to derive confidence
intervals (Butler and Schachter [1996]); when VaR is esti-
mated by Monte Carlo or related methods, we can derive esti-
mates of confidence levels directly from our simulation results,
as the level of precision of estimates can be inferred from the
number of simulations and (possibly) other features of the sim-
ulation setup (see, e.g., Pritsker [1996, pp. 45-47]) or Dowd
[1998, Chapter 5]). 

2It is of course also the most widely criticized, but I do
not wish to go into those criticisms here. Instead, I wish to out-
line an approach that enables us to derive confidence intervals
for normal VaR, and which is extendible to other, non-nor-
mal, VaRs as well.

3For details, see Chappell and Dowd [1999, pp. 1-2].
4More details of the simulation results and the soft-

ware used to generate them will be made available from the
author’s website, www.shef.ac.uk/~var.

5For low values of n, the confidence intervals also
show some asymmetry, but this asymmetry disappears as n
gets bigger.
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