FINANCIAL
ENGINEERING
MNEWDS

Issue 14

February 2000

Conditional Value-at-Risk: Optimization Algorithms and Applications
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Value-at-Risk ~ (VaR), a  widely used
performance measure, answers the question:
what is the maximum loss with a specified
confidence level? A description of various
methodologies for the modeling of VaR can
be seen, along with related resources, at the
Web site http://www.glotiamundi.org. For
the most part, approaches to calculating VaR
rely on linear approximation of risks and
assume the joint normal (or log-normal)
distribution of the undetlying market
parameters. Probably the most influential
contribution in this field has been RiskMetrics
methodology [9]. Although VaR is a very
popular measure of risk, it has undesirable
properties [2] such as lack of sub-additivity,
L.e.,, VaR of a portfolio with two instruments
may be greater than the sum of individual
VaRs of these two instruments. Also, VaR is
difficult to optimize when calculated using
scenarios. In this case, VaR is non-convex
(see definition of convexity in [10]), non-
smooth as a function of positions, and it has
multiple local extrema.

An alternative measure of losses, with more
attractive properties, is Conditional Value-at-
Risk (CVaR), which is also called Mean
Excess Loss, Mean Shortfall, or Tail VaR.
CVaR is a more consistent measure of risk
since it is sub-additive and convex [2].
Moreover, as it was shown recently [12], it can
be optimized using linear programming (LP)
and nonsmooth optimization algorithms,
which allow handling portfolios with very
large numbers of instruments and scenarios.
Numerical experiments indicate that the

minimization of CVaR also leads to near optimal
solutions in VaR terms because CVaR is always
greater than or equal to VaR. Moreover, when
the return-loss distribution is normal, these two
measures are equivalent [12], i.e., they provide the
same optimal portfolio.

CVaR can be used in conjunction with VaR and
is applicable to the estimation of risks with non-
symmetric return-loss distributions. Although
CVaR has not become a standard in the finance
industry, it is likely to play a major role as it
currently does in the insurance industry. Similar
to the Markowitz [5] mean-variance approach,
CVaR can be used in return-risk analyses. For
instance, we can calculate a portfolio with a
specified return and minimal CVaR. Alternatively,
we can constrain CVaR and find a portfolio with
maximal return, see [8]. Also, rather than
constraining the variance, we can specify several
CVaR constraints simultaneously with various
confidence levels (thereby shaping the loss
distribution), which provides a flexible and
powerful risk management tool.

Several case studies showed that risk optimization
with the CVaR performance function and
constraints can be done for large portfolios and a
large number of scenarios with relatively small
computational resources. For instance, a problem
with 1,000 instruments and 20,000 scenatrios can
be optimized on a 300 MHz PC in less than one
minute using the CPLEX LP solver.
study on the hedging of a portfolio of options
using the CVaR minimization technique is
included in [12]. This problem was first studied at
Algorithmics, Inc. with the minimum expected
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regret approach [6]. Also, the CVaR
minimization approach was applied to credit
risk management of a portfolio of bonds [1].
This portfolio was put together by several
banks to test various credit risk modeling
techniques. Eatlier, the minimum expected
regret optimization technique was applied to
the same portfolio at Algorithmics, Inc.[7]; we
have used the same set of scenatios to test the
minimum CVaR technique. A case study on
optimization of a portfolio of stocks with
CVaR constraints is included in [8]. The
reader interested in other applications of
optimization techniques in the finance area
can find relevant papers in [14].

1. Approach

This section outlines the approach suggested
in [12] for simultaneous minimization of
CVaR and calculation of VaR. The next
section discusses how to extend this idea to
problems with CVaR constraints.

Let fx,y) be a loss function depending upon
the decision vector x and a random vector y.
The decision vector x belongs to a feasible set
of portfolios, X  satisfying imposed
requirements. For example, we may consider
portfolios with non-negative positions (short
positions are not allowed) and an expected
return greater than 10%.

Example 1. Two Instrument Portfolio.

A portfolio consists of two instruments (e.g.,
options). Let x=(x7,x2) be a vector of
positions of these two instruments, m= (7 12)
be a vector of initial prices, and y=(yyz) be a
prices of these
instruments in the next period. The loss
function equals the difference between the
current value of the portfolio, (xjmzi+xums),
and an uncertain value of the portfolio at the
next period (xy;+x2y2), Le.,

vector of uncertain

Sxy) = (eomircoma)—(ryitoczyz) =
iy )by -

If we do not allow short positions, the feasible
set of portfolios is a two-dimensional set of
non-negative numbers

X= {(X/,Xz), x1=0, XzZO} .

In this case, the loss function is linear with
respect to (w.r.t.) positions and the feasible set is
defined by a set of linear inequalities.

For convenience, we assume that the random
vector y has a probability density function p(y).
However, the existence of the density is not
critical for the considered approach; this
assumption can be relaxed. Denote by ¥(x,@) the
probability that the loss fx,y) does not exceed
some threshold value a@. The VaR function
a(xf), which is the percentile of the loss
distribution with confidence level f, is the
smallest number such that ¥x,a(x,6))=6. CVaR,
denoted by ¢p(x), which is by definition the
conditional expected loss (under the condition
that it exceeds VaR), is defined by

% (x)=
(1 ‘ﬁ)_lf

S y>alx, B)

S Y)p(Y)dy

Tt 1s difficult to handle CVaR because of the VaR
function a(x, B) involved in its definition, unless
we have an analytical representation for VaR. The
main idea of our approach is that we can define a
much simpler function

Fy(x, a)=
a+(1 ‘ﬁ)_lff(xyyw(f(xl y)—a)py)dy ,

which can be used instead of CVaR. It can be
proved: (1) the function Fﬁ (X, 0) is convex

w.rt. @; (2) VaR is a minimum point of this
function w.rt. @; and (3) that minimizing

Fﬁ (X, 0) w.r.t. @& gives CVaR

0, 6)= T b a(x, £)= min T, (, ).

This follows from the fact that the dertvative of
the function Fp (X, a) wrt. @ equals
1+(1-8) ' (Hx,)-1), see details in [12]. By
equating the derivative to zero we immediately
obtain that VaR minimizes the function



Fﬂ (X, a) w.r.t. @. Furthermore, we can use

the function Fﬁ (X, 0) for the simultaneous

calculation of VaR and the optimization of
CVaR, ie.,

rpDi)r(1¢ﬁ(x):er1")|gna F[,,(x, a).

Indeed,
Fﬁ (X, a ) with respect to both variables

minimization of the function

optimizes CVaR and finds VaR in “one shot”.
Let (x*,@*) be a solution of the above
minimization problem. Then, Fg(x*,@*) equals
an optimal CVaR, the optimal portfolio equals
x* , and the corresponding VaR equals @*
Under quite general conditions (see, [11]), the

function Fﬁ X, &) is smooth. Motreover, if
the function f{x,y) is convex w.r.t. X, then the
function Fﬂ (X, a ) is also convex w.r.t. x.
Thus, if we want to minimize CVaR, we can
use the convex smooth function Fﬁ (X, O).

Therefore, if the feasible set Xis also convex,

we need to solve a smooth convex
optimization problem.
2. Optimization Problems with

Constraints on Risk

Banks, investment companies, and other
businesses tolerate different levels of risk,
depending upon their objectives and capital.
The adequate representation and management
of risk is a critical task for business success. A
typical approach in risk management is to
estimate and control VaR with a specified
confidence level, such as 0.95, 0.99, or 0.999.
VaR is estimated for wvarious periods,
depending upon the risk management
objectives - short term VaR is estimated
usually for one day or two weeks, longer
terms may include one, two, or five years. The
problem of controlling VaR can be formalized
as a mathematical programming problem with
VaR constraints. However, such a problem is
very difficult to using  formal
optimization methods because VaR is non-
convex w.r.t. the portfolio positions and it has

solve

many local minima. In this section, we show that
in contrast to VaR constraints, CVaR constraints
can be easily handled using formal optimization
approaches. Constraining CVaR also restricts
VaR because CVaR=VaR. Therefore, VaR
constraints can be replaced by more conservative
CVaR constraints.

Similar to CVaR minimization, we can include
CVaR in constraints and replace it by the

function Fﬁ (X, 0) , see [8] . For instance, let us
consider the problem of minimizing the mean
loss u(x)=Ef(x,y) subject to some balance
constraints x€ X, and two CVaR constraints with

confidence levels 8 and y . In this case, the
optimization problem can be stated as follows

min u(x)

subject to
xeX,
Pp(x)= Cp,
¢y (®)= C,,

where Cgand C) are some constants constraining
CVaR at different confidence levels. The last two
constraints can be replaced by constraints

Fﬂ (X, al)S Cﬂ S
Fy(x, az)s C,.

Indeed, if these constraints are satisfied for some
@and @ then they are satisfied for the minimal

minF,(x, a,)=¢,(x) and

minF, (x,a,)=¢,(x) . Optimization with

values

these constraints assures that the CVaR values
are propetly restricted. Moreover, if a risk
constraint is active, e.g., in the first constraint,
Fa(x*,@1*)=Cg, then the optimal value @i* equals
B-VaR.

3. Minimizing CVaR with Finite Number of
Scenarios: Linear Programming

Let us consider now the case in which an
analytical representation of the density function
p(y) is not available, but we have | scenarios, y;,
/~=1,..,J, sampled from the density p(y). For



instance, we may have historical observations
of prices for instruments of the portfolio, or
we may use Monte Carlo simulations to price
the instruments. In this case, the function

Fﬁ (X, a ) can be calculated approximately as
follows

Fy(x, a)=a+v3/ (fx,y,)-a)" ,

technique which can solve problems with a large
number of instruments and scenarios.

Example 2. CVaR Minimization with a
Constraint on Mean Losses.

Suppose that we want to minimize the CVaR of
the small portfolio described in Example 1. We
are interested in minimizing one day CVaR under

where the constant V equals
v=(16)))! and " = max(0,). If the

function f(x,y) is convex w.r.t. X, then
the function Fﬁ (X, a ) is a convex

nonsmooth function w.r.t. the vector
(x,@). Therefore, if the feasible set X
is convex, the optimization problem
with the CVaR performance function

Frequency

optimization techniques. Moreover,
if the function f{x,y) is linear w.r.t. x, Lo
these problems can be solved using
LP techniques. LP approaches are

can be solved using non-smooth —+ H H“‘
L .|||I||||| |||||"|||II|||

Maximum
loss

Pobability
1-p

CvaR
|

Portfolio loss

routinely  used in  portfolio
optimization with various criteria, such as
mean absolute deviation [4], maximum
deviation [13], and mean regret [3].

Let us first explain how LP techniques can be
used for the minimization of CVaR. Indeed,

after replacing in F 5 (X, a) the terms
(/S (X, Y; )~ O’)+ by auxiliary varibles g5, and

imposing constraints
2,2f(Xy;)-a,z 20,

we can reduce minimization of the function

F;(X, @) to the following LP problem

min a+vyl,z , (1

subject to
xOx - @
z/2f<xay/)_d, {/20, =1,...]. (3)
Several case studies (see, [1, 12]) have

demonstrated that this formulation provides a
very powerful and numerically stable

Figure 1 Portfolio Loss Distribution, VaR, and CVaR

the condition that the mean daily portfolio losses
are less than or equal to —K (i.e., the mean profit
is bigger than or equal to R). Suppose that for
two instruments in the portfolio, we have prices
for J previous days. From this historical data, we
can estimate | daily returns and calculate |
scenarios for the next day prices, y; = (y1.y2),
/=1,...,] . The mean portfolio loss equals

H(X) =]_1 Z’f:1f<x’ yj):

T3 Genlmi—y) +axe(miy).

The constraint on the mean losses is formulated
as follows

J? Z?:l (er(my—yn) taco(meyp) < —R . @)

The CVaR minimization problem can be easily
solved by minimizing the linear function (1)
subject to linear constraints (2),(3), and (4). This
problem can be solved using standard LP solvers
such as CPLEX.



4. Linearization of CVaR Constraints with
Finite Number of Scenatios

The previous section showed that nonlinear
CVaR function can be minimized using a
linear  objective  function and linear
constraints. Here, we show that a CVaR
constraint in optimization problems can be
approximated by a set of linear constraints.
Let ] scenatios, y;, j=1,...,/, be sampled from
the density p(y). Suppose that we must satisty
a CVaR constraint, ¢p(x)<Cy As it was earlier
discussed, this constraint can be replaced by

the constraint Fﬁ (X, O)SCﬁ using  the
additional variable @ Further, we can
approximate this constraint by the constraint
Fﬁ (X, O’)SCﬁ using scenarios y;, ;/=1,..,] .

Finally, the last constraint can be equivalently
represented by the set of constraints

a+vyliiz <G 5)
2% y)-a, 2,20, =1,

If constraint (5) is active, then the optimal
value @ equals VaR. A case study on the
application of these techniques to the
optimization of the portfolio consisting of the
S&P100 stocks can be found in [8].

5. Conclusion

This article has outlined a new approach for the
simultaneous  calculation of VaR  and
optimization of CVaR for a broad class of
problems. We have shown that CVaR can be
efficiently minimized using LP techniques.
Although, formally, the method minimizes only
CVaR, it also lowers VaR because CVaR = VaR.
Our numerical experiments show that CVaR
optimal portfolios are near optimal in VaR terms,
t.e., VaR can not be reduced further more than a
few percent. Also, CVaR constraints can be
handled efficiently wusing equivalent linear
constraints, which dramatically improves the
efficiency of the optimization techniques.

There is room for much improvement and
refinement of the considered approach. For
instance, the assumption that there is a joint
density of instrument returns can be relaxed. LP
algorithms that utilize the special structure of the
minimum CVaR approach can be developed.
Additional research needs to be conducted on
various theoretical and numerical aspects of the
methodology.
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