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Abstract

Over the past decade value at risk (VaR) has become the most widely used
technique for the quantification of market-risk exposure. VaR is a measure of the
potential loss that may occur from adverse moves in market prices (interest rates,
exchange rates, equity prices and so forth). The capacity for a VaR measure to
accurately predict future risk exposures depends upon the forecasts of the volatility
of market rates and the correlations between the various market rates (that is, the
variance-covariance matrix) incorporated into the VaR model. In this paper we
first present the results of tests of the stability of the variances, covariances and
correlations for exchange rates and Australian interest rates. Secondly, we assess
the performance of several time-series models that may be used to forecast the
variance-covariance matrix. In particular three models for the variance-covariance
matrix are considered: equally weighted historical variances and covariances,
exponentially weighted averages of historical variances and generalised
autoregressive conditional heteroskedasticity (GARCH). We conclude that simple
models perform as well as their more sophisticated GARCH counterparts.
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VALUE AT RISK: ON THE STABILITY AND FORECASTING
OF THE VARIANCE-COVARIANCE MATRIX

James Engel and Marianne Gizycki
1. Introduction

Over the past decade value at risk (VaR) has become the most widely used
technique for the quantification of market-risk exposure. From January 1998 banks
in Australia have been permitted (subject to a range of conditions) to use their VaR
models as the basis for determining the capital that is required to cover market-risk
exposure. VaR is a measure of the potential loss that may occur from adverse
moves in market prices (interest rates, exchange rates, equity prices and so forth).
Specifically it is the dollar amount that portfolio losses are not expected to exceed,
with a specified degree of statistical confidence, over a pre-specified period of
time. There are a number of different methodologies used to calculate VaR
(Cassidy and Gizycki (1997) provide a discussion of these models). The most
widely used method is that known as the variance-covariance approach. This
approach is based on the simplifying assumption that financial-asset returns are
normally distributed and hence, the statistical distribution of these returns can be
completely described by the mean of the market returns, the variance of market
returns and the correlations between the various market rates (that is, the
variance-covariance matrix).

The capacity for a variance-covariance VaR measure to accurately predict future
risk exposures depends upon the quality of forecasts of the variance-covariance
matrix incorporated into the VaR model. In this paper we first present the results of
tests of the stability of the variances, covariances and correlations for exchange
rates and Australian interest rates. Next we assess the performance of several
time-series models that may be used to forecast the variance-covariance matrix, in
particular three models for the variance-covariance matrix are considered: simple
historical variances, exponentially weighted averages of historical variances
(where the weights are progressively smaller for observations further in the past)
and generalised autoregressive conditional heteroskedasticity (GARCH) models.
While most Australian banks use the simpler models (past, observed variances or



exponentially weighted moving averages) there are some banks that use the more
complex GARCH approaches within their risk measurement models. This paper
investigates the benefits of the more sophisticated approaches.

2. Stability of the Variance-covariance Matrix

The standard approach, when using the variance-covariance method of estimating
VaR, is to use historical variances and covariances as the forecasts of the future
variance-covariance matrix. This approach assumes that the variances and
covariances are constant over the period of estimation and forecast.

We test this assumption using daily data for working days from 15 December 1983
to 29 October 1997. Nine foreign exchange rate returns and eight interest rate
return series are used.!

Figure 1 shows the correlation between selected pairs of exchange rate returns and
interest rate changes. Correlations calculated using moving windows of
250 and 1 250 working days (that is, approximately one and five years) are shown.
These graphs indicate, particularly when shorter window lengths are considered,
that correlations move considerably through time.

To formally test this impression the global test for a constant unconditional
correlation/covariance matrix as outlined in Jenrich (1970) is applied. This test
quantifies the difference between two matrices via the trace of a relative difference
matrix; the relative difference matrix being the difference between the two

I The exchange rates are the Australian dollar against the US dollar, German mark, Canadian
dollar, French franc, British pound, Japanese yen, New Zealand dollar, Swiss franc and Dutch
guilder. The foreign exchange series are the indirect rates (that is, rates are expressed in terms
of the foreign currency value of one Australian dollar). The interest rates are the overnight
cash rate; the 30, 90 and 180-day bank accepted bill rates; and the 1, 2, 5 and 10-year
Treasury bond yields. Returns are calculated as proportional changes in underlying rates.



Figure 1: Correlation Stability
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matrices divided by their sum.2 Firstly, within-asset class covariances and
correlations are considered. The unconditional covariance and correlation matrices
for the nine foreign exchange return series and the eight interest rate return series

2 A variance-covariance matrix with dimension p has p(p-1)2 + p independent elements,
but the corresponding correlation matrix has only p(p-1)/2 independent elements since its
diagonal elements are all unity. The Jenrich test has, in each case, an asymptotic chi-squared
distribution with the number of degrees of freedom equal to the number of independent
elements in the matrix. For testing the equality of the correlation matrix the test statistic has
the form:

s 1 as= os=a, i o
7= Sire R (R =R ~dg'(c"°R™ (R~ R))")S 'deg((¢*R (R~ R,)")
¢ =mny/(n, +n,), R=(mR +nm,R)(n, +n,), S=(d, +7 F")

where the Rs denote sample correlations, dg the diagonal operator, #; and 7, the length of data
used to estimate matrices R; and R, respectively and &; the kronecker delta (one if /=7 and
zero otherwise). If the sample correlations are replaced by sample covariances, the first term
in the equation above becomes the test for stability of covariances. The second term is hence,
a correction employed when testing correlation matrices.



are analysed separately. The full sample was broken into separate fixed-length
sub-periods. The Jenrich test is then applied to test the equality of each pair of
matrices calculated from adjacent sub-periods. The analysis was repeated for
sub-period lengths ranging between 125 and 1 250 days.

The analysis was conducted for the full foreign exchange and interest rate
covariance matrices and also for subsets of these matrices. The subsets considered
were the Australian dollar against the US dollar, Japanese yen, German mark and
British pound (major currencies); and the Australian dollar against the Canadian
dollar, French franc, Dutch guilder and New Zealand dollar (other currencies) in
the case of foreign exchange. For the interest rate series the subsets were the
Treasury bond yields for one, two, five and ten-years (bond yields); and the yields
on bank accepted bills of 30, 90 and 180-day maturities in conjunction with the
overnight cash rate (discount securities). The numbers reported in Table 1 are the
proportion of times a given covariance or correlation matrix was found to be equal
to the matrix estimated from the following consecutive sub-period of data
(at a 5 per cent level of significance).

Table 1: Proportion of Stable Comparisons

Per cent
Window length Covariances  Correlations Covariances Correlations Covariances  Correlations
Foreign exchange All series Major currencies Other currencies
125 day 0 0 19 56 0 15
250 day 0 0 8 46 0 8
500 day 0 0 17 67 0 0
750 day 0 0 0 0 0 0
1 250 day 0 0 0 100 0 0
Interest rates All series Bond yields Discount securities
125 day 0 4 0 26 0 19
250 day 0 0 0 15 0 0
500 day 0 0 0 0 0 0
750 day 0 0 0 0 0 0
1 250 day 0 0 0 0 0 0




It can be seen that the proportion of comparisons found to be equal is low. The
results indicate that the correlation and covariance matrices are far from constant.
In only one case was the correlation matrix stable over the full sample period.
There is some tendency for correlations to be relatively more stable than
covariances. To some extent this is to be expected since covariances reflect not just
the relation between two series but the variances of the series as well. To the extent
that variances are not stable this will be reflected in the covariances but not the
correlations.

The statistical significance of the difference in the matrices appears to be an
increasing function of the length of the sub-period compared. This could be
indicative of a gradual change in the true covariance matrix over time. It can also
be seen that instability is related to the dimension of the covariance matrix. Testing
was carried out on various bivariate matrices to isolate any potential outlier within
the full matrix. Appendix A reports the proportion of stable comparisons for the
bivariate covariances and correlations. The USD/AUD and DEM/AUD covariance
matrix and the 90-day bank accepted bill and overnight cash rate covariance matrix
appear to be less stable than the other bivariate systems. However, removing these
from the full analysis had no substantial effect. With the bivariate systems the
proportion of stable matrices is dramatically increased. Thus it seems that the
greater the number of financial-asset returns that a bank is exposed to the less
stable will be the associated variance-covariance matrix.

Our results are consistent with Kaplanis (1988) in that the correlation matrix is
relatively more stable than the covariance matrix. Kaplanis, however, found
evidence of a constant correlation matrix over adjacent 46-month periods for ten
stock markets’ monthly returns over the period from 1967-1982. Longin and
Solnik (1995) find the unconditional correlation matrix of monthly excess returns
for seven countries’ share price indices to be unstable over periods of five years.
Sheedy (1997) applied the same test to equity index data for the US, UK, Japan,
Germany and the World Index and foreign currency returns covering the US dollar
against the British pound, Japanese yen, German mark; the British pound against
the Japanese yen and German mark; and the Japanese yen against the
German mark. Her results, with respect to the equity data, provide mixed evidence
for the stability of the correlation matrix. She reports, however, that the foreign
exchange data consistently reject the hypothesis of constant correlation. This is
consistent with our findings.



When calculating the VaR measures it is common practice among banks to take
full account of correlations within asset classes (for example, across a number of
exchange rates or commodity prices) but to make more simplistic assumptions
about correlations across asset classes (that is, between exchange rates, interest
rates, equity returns and commodity returns). For example, the Basle Committee
on Banking Supervision prohibited the use of empirical correlations when
aggregating risk exposures across asset classes in their initial proposals to allow
banks to use internally developed VaR models to determine required capital. One
commonly cited rationale for this approach is that while reliance may be placed on
within asset class correlations, correlations across asset classes are considerably
more unstable.

To examine this proposition we examined the stability of a selection of correlations
and covariances between exchange rates, interest rates and equity prices (the
All Ordinaries Index). The results (shown in Table 2) are not significantly different
from the within asset class bivariate analysis. Across-class correlations appear to
be neither systematically more or less stable than correlations within asset classes
(both in terms of the proportion of stable comparisons and the average magnitude
of differences between matrices over time, as measured by the Jenrich statistic).
This supports the Australian Prudential Regulation Authority’s approach towards
banks’ internally-developed VaR models that may be used for capital-adequacy
purposes which does not draw any distinction between across-class and
within-class correlations.



Table 2: Proportion of Stable Comparisons — Across Asset Classes

Per cent

Covariances Correlations
Window length: 125 250 500 750 1250 125 250 500 750 1250
USD versus
BAB 90-day 22 23 0 0 0 85 85 50 33 100
Two-year bond 55 38 0 0 0 92 92 67 33 100
Five-year bond 55 38 0 0 0 96 92 67 33 100
Ten-year bond 62 38 0 0 0 100 92 67 33 100
DEM versus
BAB 90-day 85 30 17 0 0 100 92 67 33 100
Two-year bond 85 69 17 0 0 100 92 67 67 100
Five-year bond 85 69 17 0 0 100 100 67 67 100
Ten-year bond 85 69 17 33 0 100 100 67 67 100
JPY versus
BAB 90-day 85 69 17 33 0 100 100 67 67 100
Two-year bond 85 69 17 33 0 100 100 83 67 100
Five-year bond 85 69 17 33 0 100 100 83 67 100
Ten-year bond 85 69 17 33 0 100 100 83 67 100
All Ordinaries versus
BAB 90-day 48 48 17 0 0 85 62 67 67 100
One-year bond 40 38 33 33 0 100 92 83 67 0
Ten-year bond 48 23 17 33 0 92 61 50 67 0
UsD 37 38 33 33 0 92 92 50 0 100
DEM 33 30 17 33 100 92 92 50 67 100
JPY 33 31 0 33 0 89 84 67 33 100

3. Models for Forecasting the Variance-covariance Matrix

The apparent instability of the unconditional covariance matrix suggests that the
historical covariance approach will be an inaccurate estimator of the true
variance-covariance matrix. Therefore, more complex models of the evolution of
the variance-covariance matrix may be required when forecasting risk exposures.

The three classes of models that we investigate are the equally weighted historical
approach, the exponentially weighted moving average approach and the GARCH
approach. There are many other types of models that may be used. We have,



however, restricted ourselves to those models (and simple variations of those
models) that are currently used by Australian banks.

The previous section’s stability testing was based on standard covariance and
correlation measures which take account of each series’ sample mean over each
sub-period. In the analysis that follows it is assumed that each financial return
series has a zero mean. This assumption is a commonly used market practice when
measuring market risk exposures. From a theoretical perspective the mean is both
close to zero and prone to estimation error; thus, estimates of the
variance-covariance matrix may be made worse by the inclusion of an inaccurate
estimate of the mean (see Figlewski (1994)). If the standard formula for the
variances and covariances is considered the squared return component is of the
order 100 to 1 000 times greater than the mean component, hence, the inclusion of
the estimate of the means will not make a significant difference.

While several banks, in their implementation of a VaR model, re-estimate the
variance-covariance matrix daily, it is common practice in other banks to update
the variance-covariance matrix only once a quarter. As a result we consider two
sets of forecasts: the one-day-ahead forecasts and the forecast average variances
and covariances over the quarter ahead.

3.1 Fixed-weight Historical

The fixed-weight approach assumes that return covariances and variances are
constant over the sample period. Our finding of instability in the
variance-covariance matrix indicates that this is not a good assumption. However,
it is widely used on simplicity grounds. Using this approach, each element in the
variance-covariance matrix can be represented by:

5 1 N-1
O ijrid = —— 2 TVig-sVji—s (1)
5=0

where r; . ; represents the market return for asset i between days 7-s-1 and 7-s.



3.2  Exponential Smoothing

Rather than placing equal weight on past observations, exponential smoothing
places more weight on the most recent. This approach was popularised by
JP Morgan in their RiskMetrics VaR model (JP Morgan and Reuters, 1996). The
exponentially weighted moving average approach reacts faster to short-term
movements in variances and covariances. If the underlying variances and
covariances are not constant through time this faster reaction is an advantage. On
the other hand, giving a greater weight to recent data effectively reduces the
overall sample size, increasing the possibility of measurement error. Each element
of the variance-covariance matrix is represented by:

oy = Aoy +(1- ) 1, (2)
where 0<A<1

An exponentially weighted average on any given day is a combination of two
components: yesterday’s weighted average, with weight A, and yesterday’s product
of returns, which receives a weight of (1-1). This equation incorporates an
autoregressive structure for the variance-covariance, thus reflecting the concept of
volatility clustering. In the subsequent analysis two approaches are implemented.
The first is to assume, consistent with the RiskMetrics specification, that A is
constant at 0.94. The second approach is to estimate A over successive rolling
windows using maximum likelihood techniques (we shall refer to this approach as
the dynamic exponentially weighted moving average approach).

To gauge the accuracy of fixing A at 0.94, the model is estimated using maximum
likelihood methods over the full sample (4 was constrained to take the same value
for all elements of the matrix). The value obtained from this analysis using the
foreign exchange covariance matrix is 0.995.3

3 This is not statistically significantly different from 0.94.
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Like the equally weighted method the k-step ahead one-day forecasts are constant
and the quarter-average forecast is equal to 0';, .1- To see this:

E, (O-ijz',z+k) =E,((1- /1)’?,z+k—1”j,z+k—1 + /10'1‘]2',t+k—1)
- (1 - l)aj,ﬁk-l + /1657,”{_1 (3)

_ 2
= Ok

3.3 Multivariate GARCH

The GARCH model of Bollerslev (1986) is a generalisation of the ARCH model
introduced by Engle (1982). Variances and covariances are specified as stochastic
processes that evolve over time. The intuition behind these models is similar to the
exponentially weighted approach in that volatility clustering may be explicitly
modelled. Less restrictions, however, are placed on the specification of the
volatilities’ behaviour. The previous two models are nested within the GARCH
model. If a and S are zero in the below specification then the model collapses to
the fixed-weight historical model. If @ is equal to zero, a = (1-4) and = A then
the model is equivalent to the exponentially weighted model. In a univariate setting
the zero-mean GARCH(1,1)* model has the form:

R =r

/A~ NO,.H,) 4

_ 2
H=0wo+ar,+pH,

The vector of innovations or unexpected returns is assumed to be conditionally
normal with a conditional variance of H,. The multivariate framework is analogous
to the univariate in that the variance-covariance matrix is conditioned on past
realisations of covariances of financial returns but the specification of the evolution
of the covariances can become more complicated.

4 The (1.1) denotes one lagged variance term and one lagged squared return.
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The more general multivariate models assume that variances and covariances rely
on their own past values and innovations as well as other variables’ past values and
innovations. The number of parameters to be estimated in these general models is
such that, as the number of variables increases, computation can become
intractable. To illustrate, for our nine-by-nine foreign exchange matrix the number
of parameters to be estimated by one of the more general models is 243. Given that
our focus is on a model’s forecasting performance, which requires repeated rolling
estimation of the models, a more parsimonious parameterisation is needed.

To this end two models are used. The first model is the constant correlation
multivariate GARCH model developed by Bollerslev (1990). The model has the
advantage of reducing the number of parameters to be estimated to 3p + p(p-1)/2
where p is the number of financial returns. Variances are estimated using a simple
GARCH(1,1) formulation:

2 2 2
O =0+ + ﬂjo—j,l (5)

i i'it
The covariances are formulated as:
Oijrr1 = PijCi 119 j 11 (6)

Non-negativity constraints need to be imposed on the variance parameters to
ensure that the conditional variance estimates are always positive. Given the
recursive nature of the system, stationarity requires that o; + £, < 1 for all i.

The parameters of the model are estimated by maximum likelihood techniques.
Under standard regularity conditions the maximum likelihood estimator is
asymptotically normal.> The log-likelihood is maximised using the Bernt, Hall,
Hall and Hausman (1974) algorithm. Given the highly non-linear structure of the
log-likelihood the iteration process is extremely time intensive. Even after the

5 Following Bollerslev (1986), if the model correctly specifies the first two conditional
moments but the conditional normality assumption is violated, under suitable regularity
conditions the quasi-maximum likelihood estimates will be consistent and asymptotically
normal, but the usual standard errors have to be modified.
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constant correlation assumption is imposed on the model the 63 parameters in the
full system (for the nine-by-nine foreign exchange variance-covariance matrix)
make rolling estimation computationally intractable. To facilitate rolling estimation
the approach taken is to estimate separate bivariate systems for each pair of
financial returns. Each of these 36 systems have seven parameters to be estimated.
From these bivariate systems the full variance-covariance matrix can be
constructed. To the extent that covariances are in fact jointly determined estimates
produced from the pair-wise estimation may be biased and inefficient. Also, this
approach can not guarantee positive definiteness of the covariance matrix but does
enable forecasts to be constructed in a tractable fashion. This approach provides
only one estimate of each covariance, but p-1 estimates for the @, « and f
parameters for each variance. The average of the p-1 forecasts of each variance is
used.

The one-day-ahead GARCH variance forecast for the constant correlation GARCH
model is given by:
2

_ 2 2
O~ Tar +:Bi‘7i,z

| )

@;

-5

T
J..2
+ai2/8i B
=0

T represents the length of data used in the estimation. It follows that the k-step
ahead forecast has the form:

,
l-a,;-p

2 = k-1, 2 _
O =@, (e, + ) (07, —w;) wherem,; =

(8)

and hence, are not constant in k. Given these variance forecast functions the
average one-day forecast over a quarter (containing N days) is:

1'(0517 +ﬂi)N
l-a, - B

j ifa + B #1 9)

1
2 _ 2
Oy~ @; +ﬁ(o-i,t+1 -wi)(

The covariance forecasts are simple functions of these variance forecasts and the
parameters p;; given the constant correlation assumption.
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This constant conditional correlation specification has been used widely in the
literature to facilitate estimation given the difficulty in estimating multivariate
GARCH models, but its validity is open to debate. The assumption could be
justified if the conditional correlation remains constant over time but the market
expected returns and variances vary over time. There is evidence of predictable
time variations in the equity return distributions; the variance of returns has been
shown to be heteroscedastic and univariate GARCH models have had success in
modelling returns’ variances (see Alexander and Leigh (1997) and Figlewski
(1994)). Factors which weigh against the constant correlation assumption include
the increased interdependence of international markets (growing integration could
lead to increasing correlations through time); the fact that markets tend to be more
strongly correlated in times of high volatility than in times of low volatility and the
results of our own stability testing discussed previously. Appendix B analyses
deviations from the simple constant correlation model. The results imply that this
assumption of a constant conditional correlation is questionable; threshold and
time-trend models are able to explain movements in conditional correlations. In the
following forecasting exercise the results from this analysis should be taken into
account. Poor forecasting performance of the constant conditional GARCH model
may be due to mis-specification of the model.

The second multivariate GARCH model that we use for forecasting is the
Babba, Engle, Kraft and Kroner (BEKK) parameterisation. Engle and Kroner
(1995) introduced this model because its quadratic form guarantees that the
conditional covariance matrix will be positive definite. The model has the form:

H,,,=C'C+B'HB+ARRA (10)

Matrices 4, B and C are the parameter matrices that need to be estimated. R, is a
vector of returns for time «. H, is the estimated variance-covariance matrix at time .
Again the unconstrained BEKK model is too computationally time consuming for
use in this forecasting exercise. To facilitate tractability, a diagonal structure is
imposed on the parameter matrices, which removes cross market influences. The
model automatically imposes the necessary non-negativity constraints. Rather than
producing estimates pair-by-pair, the full model is estimated. Variance forecasts
from the BEKK model have the same form as those from the GARCH constant
correlation model, with the GARCH parameters being replaced by squared
parameters. The covariance forecasts in the BEKK model relax the constant
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correlation assumption and have the same specification as the constant correlation
GARCH variance equations.

4. Forecast Performance

There is a wide literature on modelling financial return variability. To date there
has been little agreement in the findings of this literature. West and Cho (1994)
compared the out-of-sample forecasting performance of univariate homoskedastic,
GARCH, autoregressive and non-parametric models of exchange rate volatility to
find that, over a one-week horizon, GARCH models tend to be slightly more
accurate. However, for longer forecast horizons West and Cho found that there was
little difference in the forecast performance of the various models. Similarly,
Brailsford and Faff’s (1996) analysis of Australian stock market variability
provides some support for the use of GARCH modelling. However, the rankings of
the various model forecasts are sensitive to the choice of performance criteria. In
contrast Boudoukh, Richardson and Whitelaw (1997), in forecasting the volatility
of US interest rates, found that a non-parametric approach outperformed the
GARCH model. Campa and Chang (1997), also using foreign exchange data,
found that, for shorter time horizons, exponentially weighted moving average
models outperform both the fixed-weight historical and GARCH models.
However, for longer forecast horizons, fixed-weight models are found to be
superior.

More recently the literature has considered forecasts of covariances and
correlations. Alexander and Leigh (1997), using equity and foreign exchange data,
found that exponentially weighted moving average methods outperform
fixed-weight and GARCH methods. It was noted in this study that GARCH models
do not perform well when judged by statistical criteria that measure the centre of
the distribution. Sheedy (1997) noted that, when comparing various GARCH-type
models, the parsimonious models, such as the constant correlation model, perform
as well as the more complicated specifications.

One-day-ahead forecasts and quarterly average forecasts are computed by moving
the window lengths through the sample and re-estimating the models at each point
(we consider moving windows of length 125 days, 250 days, 500 days, 750 days
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and 1 250 days). Due to the assumption of a zero mean, the one-day-ahead realised
matrix will have the form:

A2 _
O i1 =1 il 4 (1)

and the elements of the quarterly (63 days) average realised matrix are calculated
as:

. 1 &
G ijav =5202141 (12)

1=1

Since past work has shown that model choice is sensitive to the performance
criteria, when comparing the forecasts from the different models a number of
performance measures are employed. If we assume conditional normality and zero
mean, forecasting the variances and covariances is equivalent to forecasting the
probability density function of returns. We can evaluate their accuracy by
measuring how well the forecast distribution fits the actual data over the forecast
horizon. The greater the log-likelihood function for a given sample the better is the
fit of the estimated distribution.

In all cases, the exponentially weighted average log-likelihood falls significantly
below the others. This is not unexpected since the parameter in this model is
imposed and not estimated. When a window length of 250 days is used, the
fixed-weight model outperforms the GARCH models, but when a window length
of 1250 days is used these rankings are reversed. Due to the large number of
parameters that the GARCH models need to estimate, the length of data needed to
obtain accurate parameter estimates is large. This is illustrated by the increased
performance of the GARCH models when 1 250 days of data are used. The BEKK
model outperforms the constant correlation based on its log-likelihood. This
follows from the increased freedom of the parameterisation of the BEKK model.

Model comparisons based on the log-likelihood are conditional on the assumption
of normality. As normality does not hold for many financial-return series, seven
distribution-free performance measures are analysed.
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Four symmetric performance criteria are considered:

Mean error —Z(Gl ~0o})
1 A2 2
Mean absolute error —z o, — O,
NS
1& o a0
Root mean squared error —> (6} —07)
N 4 14
t=1
A2 2
1 Y|6/ -0
Mean absolute percentage error —Z —t
t=1 O-f

The mean error offsets the effect of errors of different signs, however, the mean
error can be used as a general guide as to the direction of over- or under-prediction.
Both the mean absolute error and the root mean squared error (RMSE) focus on the
magnitude of errors without taking into account the direction of error, with the
RMSE placing greater weight on larger errors. The mean absolute percentage error
gives a relative indication of overall forecasting performance.

To account for asymmetry in the loss function we use two error statistics
developed by Brailsford and Faff (1996):

5 _J\@m}

Mean mixed error (under) {

where o refers to number of over predictions and # to the number of under
predictions

The mean mixed error (under) penalises under-predictions more heavily while the
mean mixed error (over) places greater weight on over-predictions. Finally, to test

o+

Mean mixed error (over) {



17

the efficiency of each model’s forecasts we consider the regression R* from
6} =¢ +06c;. If the model were fully efficient ¢ would not be significantly
different from zero, and &and the R would both be close to one.

At each point in time the rolling-window estimation results in a forecast
variance-covariance matrix to be compared with the actual realisation. Given that
the foreign exchange matrix contains 45 elements and the interest rate matrix
contains 36 elements, rather than assess each model’s forecast performance for
each individual variance and covariance a more parsimonious approach was
adopted. At each point in time each element of the variance-covariance matrix is
treated as a separate observation. The forecast performance measures were then
averaged across all observations. The results for the daily forecasts are summarised
in Figures 2 and 3. For all criteria, the smaller the number the better (except the
R-squared measure). Full details are reported in Appendix C.

Clearly, model choice depends crucially on the metric used. Across criteria, no one
model consistently outperforms any other. Given this variation, previous work that
relies on one metric should be viewed with caution. In terms of mean error, mean
absolute error, root mean squared error, mean under-prediction, and R-squared the
simpler models (the fixed-weight and the static exponential models) are preferred.
However, the GARCH models tend to do better when the models are assessed
against the mean-absolute percentage error. Also the BEKK formulation of the
GARCH model tends to produce the lowest average over-prediction (particularly
for the foreign exchange data).
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Figure 2: Foreign Exchange Series — Daily Forecasts

Mean Error

Mean Absolute Error

0.00008

0.00006

0.00004

0.00002

L] I l l l

Hist
Root Mean Squared Error

Exp Dexp Bekk GarchCC Hist

Exp

Mean Absolute Percentage Error

0.00000

Dexp Bekk GarchCC

1200

900

600

o)
S

00

Hist Exp Dexp Bekk GarchCC Hist Exp
Mean Mixed Error - Under Mean Mixed Error - Over

0.004
0.003 ] s e
002w wwel = R O ww -
0.001y1 :
0.000 ] | | | L] ] | ] | ||

' Hist Exp Dexp Bekk GarchCC Hist Exp Dexp Bekk GarchC

Regression R Squared

B 125 Days

0.000 gy 250 Days

0.06 1| | . 500 Days

R B DR B e 750 Days

' Hist Exp Dexp Bekk GarchCC

0
Dexp Bekk GarchCC

0.0060

0.0045

0.0030

0.0015

0.0000



0.0003

0.0002

0.0001

0.0000

-0.0001

0.004

0.003

0.002

0.001

0.000

0.004

0.003

0.002

0.001

0.000

0.08

0.06

0.04(;

0.02(

0.00

19

Figure 3: Interest Rate Series — Daily Forecasts
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When the different models are compared across all metrics the more complicated
GARCH models do not, in general, out-perform the simpler fixed-weight and
exponentially weighted moving average approaches. For interest rates, the static
exponentially weighted moving average model usually dominates all other models.
For all criteria except the MAPE and MMEU the exponentially-weighted model
performs best, both when forecasting daily and quarter-average variances and
covariances. The fact that the fixed-parameter exponential model, in general,
outperforms the dynamic exponential model provides quite strong evidence for the
use of the constant parameter simplifying assumption used by RiskMetrics. The
sharp decay in the weights of the static exponential model is such that the effective
data window is quite short — lengthening the data window has little impact on the
forecasted variances and covariances (this can be seen in Figure 3: the performance
of the static model is invariant to the window length). This indicates that, for the
interest rates’ variance-covariance, shorter window lengths provide more efficient
forecasts. This finding is consistent with the results of the diagnostic testing of the
constant correlation model, which suggest that correlations tend to evolve
gradually over time.

The relative performance of GARCH models is strongest in the case of the daily
foreign-exchange forecasts. However, the differences in performance across
models are not large and for shorter window lengths the simpler models tend to be
favoured. The constant-parameter exponential moving average forecasts
one-day-ahead variances and covariances performs well while the
equally-weighted historical average performs relatively strongly in forecasting
quarter-average variances and covariances. Although the simpler models’
advantage dissipates as the window length is increased, the more complicated
models do not then dominate. In conclusion, the simpler models apparently do not
consistently under-perform their more complicated counterparts — in fact, there is
some support for the contrary.

To test whether performance levels differ significantly across the five models we
use the test of equality of the mean squared error values presented by
West and Cho (1994). Under the null hypothesis of equality of mean squared
errors, the test statistic has a y’(4) distribution. The tests of equality are carried out
on the daily and quarter-average forecasts for each of the different window lengths.
Table 3 contains these results.
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Table 3: Equality of Mean Squared Errors Across Models

Window length 125 250 500 750 1250

Foreign exchange

Daily forecast 257.6* 193.3* 687.5% 1075.4* 50.5%*

Quarter average forecast 461.7* 959.0* 2009.2* 4220.3*  1028.0%*

Interest rates

Daily forecast 11797.8%* 3304.9% 81.6* 186.2* 201.7*

Quarter average forecast 728.5* 305.1* 130.1* 526.8* 383.7*
Note: * denotes significance at the 1 per cent level

The null of equality is rejected in all cases. To further investigate the differences
amongst models we applied West and Cho’s test to other groupings of models. In
most instances we found that each model produced a mean squared error that
differed significantly from that of all other models. When considering daily foreign
exchange variances and covariances based on a 125 day window, and daily interest
rate forecasts using 125, 250 and 1250 day calibration windows all models
produced significantly different mean squared errors. Similarly, in the case of the
quarter-average forecasts only one instance of equality was identified (the dynamic
exponential, BEKK and constant-correlation models when applied to interest rates
and calibrated on a 500 day window).

For the daily foreign exchange forecasts the model groupings based on mean
squared errors vary across the different window lengths. When 250 or 500 day
window lengths are used the West and Cho test groups together the dynamic
exponential and BEKK models, and the fixed-weight, fixed-parameter exponential
and constant-correlation models. Mean squared errors produced by the dynamic
exponential, BEKK and fixed-weight models, and the fixed-parameter exponential
and constant correlation models do not differ significantly when the 750 day
window is used. For the 1250 day window the fixed-weight and dynamic
exponential models, and the fixed-parameter exponential, BEKK and
constant-correlation models may be grouped together. In the case of the daily
interest rate forecasts (500 and 750 day windows) the dynamic exponential and
BEKK models, and the three other models may be grouped together.

In addition to testing across models we used the West and Cho test to test whether,
for a given model, the mean squared errors differed significantly across the various
data window lengths. The results of this testing are presented in Table 4.
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Table 4: Equality of Mean Squared Errors Across Window Lengths

Model Hist Exp Dexp Bekk GarchCC
Foreign exchange

Daily forecast 4.3 4.0 421.2* 11.8%* 6.4
Quarter average forecast 1189.9% 4.0 833.2* 5.1 7.0
Interest rates

Daily forecast 115.2%* 4.0 60.8* 93 292.3*
Quarter average forecast 217.5%* 4.0 89.9* 20.9* 22 4%

Notes:  * and ** denotes significance at the 1 per cent and 5 per cent level respectively

The effect of increasing the data window length varies across the different models.
For the historical approach, the shorter the length of data used, the better the model
(at least down to our smallest window of 125 days). For the quarter-average
foreign exchange, daily interest rate and quarter-average interest rate forecasts the
differences in mean squared errors are significant. The fixed-parameter
exponentially-weighted moving average approach gains no benefit from increasing
the data window, since little weight falls on data more than a quarter ago. The
GARCH models do not consistently favour longer window lengths. For instance,
in the case of the BEKK model, increasing the window length significantly reduces
mean squared errors for daily foreign exchange forecasts, but significantly
increases mean squared errors for quarter-average interest rate forecasts.

The fact that the forecast performance of the dynamic exponentially moving
average and the GARCH models do not systematically improve as the length of
data used for model estimation increases is a little surprising. Increased data length
should provide more accurate parameter estimates. The fact that more precise
parameter estimates are not resulting in more precise forecasts suggests that these
may not be appropriate models for this purpose and that other classes of models
should be considered.

Further analysis of forecast errors for the individual variances and covariances
shows that much of the relatively poor forecasting performance of the GARCH
models can be attributed to extremely poor prediction of a small number of
elements within the variance-covariance matrix (for example, the variance of the
Australian dollar — New Zealand dollar exchange rate). When these elements are
removed, however, the GARCH models still do not outperform the simpler
models. The simpler models exhibit fairly constant behaviour across the elements
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of the variance-covariance matrix. This is consistent across all forecast-error
metrics. As the sample size is increased these simple models perform better on
average across all matrix elements, but the dispersion around this average
increases. This behaviour is found in both the daily and quarter-average results.
For the GARCH models there does not seem to be a consistent relationship
between the length of data window and the dispersion of forecasting accuracy
across the elements of the variance-covariance matrix. At times increasing the data
window increases the spread of forecast metrics across the matrix elements, while
at other times the spread is reduced.

The users of a VaR model are not likely to view over- and under-prediction of
variances and covariances equally. A model that consistently over-predicts
volatility will overstate a portfolio’s risk. This may be attractive to supervisors who
may prefer models to err on the conservative side. However, individual traders
within a firm may prefer models which under-predict risk and thus overstate
risk-adjusted returns. It is not clear whether the banking firm as a whole would
prefer a model that over- or under-predicts risk. The capital allocation flowing
from an overly conservative model will be more expensive and hurdle rates of
return unnecessarily high. Against this, a model that consistently under-predicts
will expose the bank to an unexpectedly high probability of bankruptcy. We need
to consider prediction of variances and correlations separately. Over-estimation of
variances unambiguously over-predicts true risk. The effect of over-prediction of
correlation depends upon the composition of the portfolio subject to the VaR
model. Hence, we separately consider three measures of forecast bias in variance
prediction: the mean error, and the mean mixed errors, both over and under. These
are shown in Figures 4 and 5. Full details are given in Appendix C.
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Figure 4: Foreign Exchange Variance
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Figure S: Interest Rates Variances
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Consistent with the previous results, the fixed-parameter exponentially-weighted
moving average tends to outperform the other models when forecasting interest
rates, producing low mean-error and low over-prediction results. For daily and
quarterly interest-rate variance forecasts the historical and constant-correlation
GARCH models respectively provide the least under-prediction and thus can be
taken to be the most conservative models. The results are more mixed for foreign
exchange with no model consistently outperforming the others.

As we noted earlier, the frequency with which banks re-estimate their
variance-covariance matrix varies. While banks are required to re-estimate the
matrix at least quarterly for regulatory purposes, many banks update their matrix
each day. To gauge the impact of less frequent re-estimation on forecast
performance we compare the root mean squared error of one-day-ahead forecasts
with that of the forecast for the last day of the quarter. The percentage increase in
root mean squared error is shown in Table 5.

The first three models predict that future variances and covariances will remain
constant. The forecast accuracy of these simple models declines by something in
the range of 2 to 10 per cent, which in comparison with the other measurement
errors embodied in VaR models is probably not large (see, for example,
Gizycki and Hereford (1998)). In contrast, the GARCH models (in which the
future path of variances and covariances follows a smooth decay function) perform
much more poorly over the longer forecast horizon. The poor performance of the
models calibrated on the shorter data periods may be attributed to imprecision in
estimation of the model parameters. However, the forecast accuracy of the more
robust long-window estimates declines by as much as a half over the quarter. In
several instances we obtain the unusual result that better forecast accuracy is
obtained for the longer horizon than the day-ahead forecasts.
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Table 5: Increase in RMSE over the Quarter

Per cent

Foreign exchange Interest rates
Fixed-weight historical
125 2.21 2.12
250 -1.42 -1.14
500 0.44 0.25
750 -2.67 -2.92
1250 2.32 2.18
Exponential smoothing — fixed-parameter
125 8.03 8.00
250 4.76 5.05
500 521 5.15
750 1.17 1.07
1250 6.23 6.27
Dynamic exponential smoothing
125 11.19 11.32
250 7.39 7.84
500 6.12 6.17
750 2.46 2.44
1250 6.73 6.80
Constant correlation GARCH
125 2712.01 3360.55
250 21.58 29.51
500 -4.74 -4.65
750 25.39 25.08
1250 39.38 39.38
BEKK GARCH
125 33.21 38.53
250 238.23 293.77
500 -1.53 -1.39
750 50.69 50.41
1250 50.50 51.52
Note: For each model and each element of the variance-covariance matrix the root mean squared error was

calculated for forecasts of the variance or covariance to be observed on the next day and the last day of
the quarter. This table shows the difference between the two root mean squared errors expressed as a
percentage of the one-day-ahead root mean squared error. This ratio has been averaged across all
elements of the variance-covariance matrix.
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5. Conclusion

There are two principal conclusions to be drawn from this paper. Firstly that there
is considerable variation in variances and, to a lesser extent, correlations over time.
This provides support for APRA’s approach to market-risk measurement, which
requires that banks update the parameters of the variance-covariance matrix at least
quarterly. That said, moving from quarterly to daily updating of parameters only
slightly improves forecast accuracy. Secondly, the cost, in terms of forecasting
accuracy, of using simple models of the time-series evolution of variances and
covariances does not appear to be high. Simple models such as equally-weighted
moving averages and fixed-parameter exponentially-weighted moving averages
appear to perform as well or often better than more complex GARCH models.

These findings provide some support for the practices prevalent in the Australian
banking industry where comparatively simple models of variances and covariances
are employed in formulating VaR models and the financial return data underlying
the VaR models are periodically updated, often daily but at least quarterly.

There are a number of caveats to the application of the results of this forecasting
exercise to the practical assessment of VaR models. Modelling variances and
covariances is just one component of a VaR model, which must also address the
overall distribution of financial returns, portfolio composition and measurement of
the sensitivity of financial instruments to movements in underlying prices.

If it is assumed that financial returns follow a normal distribution the mean returns
and the variance-covariance matrix are sufficient to describe the full distribution of
financial returns. There is strong evidence to suggest, however, that financial
returns are not normally distributed. In such a case a model that forecasts
covariances well, will accurately forecast behaviour around the centre of the
distribution but not necessarily in the distribution’s tails. The focus of VaR models
in measuring market-risk is on the extreme tails of the distribution (typically the
first or fifth percentiles). Going beyond the variance-covariance VaR model, banks
have developed a range of VaR models (such as historical simulation and Monte
Carlo simulation) which place stronger emphasis on modelling the extremes of
financial return distributions. Clearly more work remains to be done comparing the
tail forecasting performance of various variance-covariance VaR formulations with
that of other VaR models.
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In this paper, equal weight has been given to each variable within the
variance-covariance matrix. In practice, banks’ portfolios tend to be concentrated
in a small number of assets. For example, the bulk of banks foreign exchange
exposure may derive from trading in major currencies such as the US dollar,
German mark and Japanese yen. Accurate forecasting of the variability of these
rates will be much more important than for other less actively traded currencies.
The assessment of the forecasting performance of VaR models needs to be
calibrated against the composition of banks’ portfolios.

Accurate prediction of the variability of the value of a portfolio requires an
accurate forecast of the probability of larger moves in market prices and precise
measurement of the sensitivity of the value of various instruments to those larger
price moves. For most simple instruments, such as spot and forward foreign
exchange and bonds, measurement of price-sensitivity is a straightforward matter.
In the case of complex instruments, such as options, however, there remains wide
variation in the practices adopted to incorporate them into a VaR framework.
Further research on these issues remains to be done.
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Appendix A: Stability Analysis

Table Al: Foreign Exchange
The proportion of stable matrices; per cent

Covariances Correlation
Window 125 250 500 750 1250 125 250 500 750 1250
length
USD versus
DEM 26 0 17 33 0 70 38 50 33 0
JPY 30 0 17 33 0 74 38 50 33 0
GBP 33 15 17 33 0 89 54 50 33 0
CHF 33 15 17 33 0 89 54 50 33 0
NLG 44 23 50 33 0 100 69 83 67 0
NZD 44 23 67 33 0 100 69 83 67 0
FRF 44 23 67 33 0 100 69 83 67 0
CAD 48 31 67 33 0 100 100 83 67 0
DEM versus
JPY 62 38 67 33 0 100 100 83 67 100
GBP 67 53 83 67 0 100 100 100 100 100
CHF 74 53 83 67 0 100 100 100 100 100
NLG 74 53 83 67 0 100 100 100 100 100
NzZD 74 53 83 100 0 100 100 100 100 100
FRF 74 53 83 100 0 100 100 100 100 100
CAD 78 53 83 100 100 100 100 100 100 100
JPY versus
GBP 78 62 83 100 100 100 100 100 100 100
CHF 78 62 83 100 100 100 100 100 100 100
NLG 78 62 83 100 100 100 100 100 100 100
NzZD 78 62 83 100 100 100 100 100 100 100
FRF 78 62 83 100 100 100 100 100 100 100

CAD 78 62 83 100 100 100 100 100 100 100
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Table A2: Interest Rates
The proportion of stable matrices; per cent

Covariances Correlations

Window length 125 250 500 750 1250 125 250 500 750 1250
BAB 90-day versus

Overnight cash 22 7 0 0 0 70 84 5 67 100
BAB 30-day 59 30 0 0 0 100 100 100 100 100
BAB 180-day 63 61 0 0 0 100 100 100 100 100
One-year bond 71 69 0 0 0 100 100 100 100 100
Two-year bond 70 69 17 0 0 100 100 100 100 100
Five-year bond 70 69 17 0 0 100 100 100 100 100
Ten-year bond 70 69 17 0 0 100 100 100 100 100
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Appendix B: Conditional Correlation Analysis

Given the questions surrounding the constant correlation assumption various
departures from the model are tested. Three alternative models are estimated along
the lines of Longin and Solnik (1995). The constant correlation model is
augmented with a time trend, threshold variables and asymmetry variables. The
models are estimated over the full sample; over two halves of the sample; over four
quarters of the full sample; and over consecutive 500 day periods. To simplify the
analysis only bivariate systems involving the AUD\USD paired with the eight
other exchange rates and 90-day bank bill rate paired with the other interest rate
series are used.

The covariance equation in the model augmented with a time trend (chosen
arbitrarily as linear) has the form:

Oijrr1 = (,01]0 + Pglt)01,1+10'j,r+1 (B1)

If the coefficient on the time trend is significantly different from zero then this
provides evidence that the conditional correlation is not constant across time.
Table B1 summarises the results from this exercise.

Table B1: Testing Constant Correlation GARCH Functional Form
Full sample  Half'sample  Quarter sample 500 days

Time trend

Foreign exchange 13.56* 6.23*% 4.88%* 2.75%
Interest rates 4.83% 4.03* 3.73*% 2.43%*
Threshold

Foreign exchange 6.28% 4.74* 3.14%* 2.14
Interest rates 431%* 5.02* 3.47*% 2.03
Asymmetry

Foreign exchange (¢ij1 # ¢,~]~2) 2.48%* 1.58 1.83 1.43
Foreign exchange (¢ij0 # ¢,~]~3) 2.24 0.97 1.47 0.94
Interest rates (¢ij1 # ¢,~]~2) 2.38 1.99 1.53 1.39
Interest rates (¢;;0 # #j3) 2.29 1.44 1.45 1.13

Notes:  The results reported are the average standard t-statistic on the p; coefficient across time periods and all
elements in the variance-covariance matrix.
* denotes significance at the 5 per cent level.
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The time trend coefficient is significant across all samples. Over the full period,
therefore, covariances have significantly changed. It is worth noting that as the
sample size decreases the time trend becomes less significant. To this extent
smaller data windows, when no time trend is included, would be expected to give a
more accurate representation of the evolution of the underlying process.

To test the hypothesis that correlations increase during periods of high volatility, a
threshold effect is introduced into the bivariate system. With this threshold on
correlation, the covariance term of the GARCH specification can be written as:

Oijr1 = (pijO + é:zj]St)o-i,tHO—j,tH (B2)

where S, is a dummy variable that takes the value 1 if the estimated conditional

variance of the USD/AUD exchange rate return is greater than its unconditional
value and 0 otherwise. The threshold for the interest rate series is the variance of
the change in the 90-day bank bill rate. This choice of threshold is arbitrary. The
unconditional variance of innovations from the base model is taken as the
exogenous threshold. The coefficient &;; will be positive if the correlation
increases when the conditional variance is high. The average t-statistic on the
dummy variable coefficient is shown in the table above.

The threshold coefficient is significantly different from zero in all cases except the
500 day window, hence, for the larger sized samples a threshold effect is present.
This suggests that the use of shorter data windows may compensate for the failure
to explicitly model a threshold effect. The threshold coefticients are significantly
positive for all pairs of foreign exchange rates and longer-term interest rates
indicating that periods of high volatility are associated with increased correlations.®
This is supportive of the stress-testing approach set out in APRA’s market-risk
reporting requirements which assumes that ‘worst case’ price movements occur
simultaneously across a range of markets.

6 The threshold coefficients are significantly negative for short-term interest rates. Hence,
increased variation is associated with decreased correlation. This may reflect the interaction
of the operation of monetary policy with market expectations.
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The third model looks at the issue of asymmetry. In the previous models a negative
or positive shock is assumed to have the same impact on correlation. Here we test
whether negative and positive shocks have a different impact on the conditional
correlation. This augmented model conditions the correlation on both the sign and
magnitude of past shocks to the USD/AUD exchange rate and for the interest rate
matrix the 90-day bank bill rate. This asymmetric correlation GARCH has the
following form:

Oijrr1 = (¢ijOS1,t + ¢zj1S2,t + ¢ij2S3,t + ¢ij3S4,t)o-1‘,t+lo-j,t+1 (B3)
where S , are the dummy variables that take the values:

S, .= lif g ,isless than -o; and zero otherwise
Sy = 1if g ,is less than 0 and zero otherwise

S; .= 1 if g , is greater than 0 and zero otherwise
Sy .= 1if g ,is greater than o; and zero otherwise

Asymmetry is captured when ¢, # @» and ¢;5 # ¢ 3. As can be seen from the
results asymmetry does not appear to be present. This is consistent with the
literature regarding foreign exchange series (Sheedy (1997)).
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Appendix C: Forecast Performance

An asterisk indicates best performance. The numbers presented are multiplied by
1000 except for the MAPE and R squared criteria.

Table C1: Foreign Exchange

Daily

Hist Exp Dexp BEKK GARCHCC
125 day window
ME 0.004* 0.004 0.009 -0.005 0.005
MAE 0.049 0.047* 0.054 0.049 0.049
RMSE 0.098 0.094* 0.103 0.377 0.108
MAPE 482.510 640.474 431.204 508.773 452.449*
MMEU 1.939% 1.975 1.994 2.683 1.968
MMEO 4.122 3.926 4.421 2.778% 4.069
R? 0.035 0.088* 0.004 0.001 0.037
250 day window
ME 0.004 0.004* 0.008 -0.004 0.004
MAE 0.048 0.047 0.053 0.046% 0.048
RMSE 0.097 0.094* 0.100 0.111 0.094
MAPE 448.560 640.634 584.847 227.159* 429.216
MMEU 1.934 1.974 1.917*% 2415 1.957
MMEO 4.133 3.928 4.427 3.196% 4.029
R’ 0.038 0.088* 0.012 0.027 0.084
500 day window
ME 0.004 0.004 0.018 -0.003* 0.003
MAE 0.048 0.047 0.058 0.045% 0.047
RMSE 0.097 0.094* 0.101 0.107 0.094
MAPE 530.773 640.634 639.489 461.536* 521.527
MMEU 1.915 1.974 1.666* 2.269 1.973
MMEO 4.163 3.928 5.256 3.346% 3971
R’ 0.039 0.088* 0.014 0.039 0.083
750 day window
ME 0.005 0.004 0.027 -0.001* 0.003
MAE 0.049 0.047 0.063 0.046* 0.047
RMSE 0.097 0.094* 0.101 0.095 0.094
MAPE 541.055 640.634 1 151.385 496.691* 597.006
MMEU 1.914 1.974 1.453% 2.197 1.965
MMEO 4.233 3.928 5.915 3.513* 3.981
R’ 0.041 0.088 0.027 0.082 0.095%
1 250 day window
ME 0.006 0.004 -0.004 0.000% 0.003
MAE 0.050 0.047 0.045% 0.046 0.047
RMSE 0.097 0.094* 0.097 0.095 0.094
MAPE 570.695 640.634 717.589 490.637* 578.418
MMEU 1.877% 1.974 2.156 2.133 1.954
MMEO 4.372 3.928 3.655 3.634% 4.014

R’ 0.033 0.088 0.023 0.081 0.092*
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Table C2: Foreign Exchange

Quarter-average

Hist Exp Dexp BEKK GARCHCC
125 day window
ME 0.000%* -0.001 0.004 -0.010 0.002
MAE 0.019* 0.021 0.027 0.043 0.022
RMSE 0.030%* 0.033 0.042 0.441 0.125
MAPE 1.370 1.693 5.663 1.209* 1.312
MMEU 1.802%* 2.099 2.041 4.368 1.847
MMEO 2.039 1.930 2.554 0.984* 2.099
R’ 0.335% 0.327 0.104 0.002 0.025
250 day window
ME 0.000%* -0.001 0.004 0.018 0.001
MAE 0.017* 0.021 0.024 0.066 0.019
RMSE 0.027* 0.033 0.035 3.388 0.062
MAPE 2.671 1.693% 1.873 2.188 2.072
MMEU 1.698%* 2.097 1.809 3.960 1.714
MMEO 1.960 1.932 2.539 1.054*% 2.008
R? 0.389* 0.327 0.176 0.000 0.096
500 day window
ME 0.000%* -0.001 0.014 -0.015 0.000
MAE 0.017* 0.021 0.026 0.029 0.017
RMSE 0.025% 0.033 0.035 0.106 0.027
MAPE 2.887 1.693 4.096 0.997* 2.688
MMEU 1.637 2.097 1.147% 3.713 1.663
MMEO 1.966 1.932 3.498 0.952% 1.960
R’ 0.442% 0.327 0.237 0.023 0.410
750 day window
ME 0.000* -0.001 0.023 -0.011 0.000
MAE 0.017* 0.021 0.030 0.028 0.017
RMSE 0.025* 0.033 0.036 0.108 0.027
MAPE 3.360 1.693 7.563 1.379% 3.344
MMEU 1.643 2.097 0.637*% 3.392 1.685
MMEO 2.044 1.932 4.542 1.133*% 1.970
R’ 0.448%* 0.327 0.357 0.026 0.401
1 250 day window
ME 0.002 -0.001 -0.009 0.668 0.001*
MAE 0.018* 0.021 0.019 0.703 0.018
RMSE 0.026%* 0.033 0.030 96.804 0.029
MAPE 3.473 1.693*% 3.527 21.811 3.319
MMEU 1.522%* 2.097 2.499 3.766 1.614
MMEO 2221 1.932 1.390% 1.523 2.147
R? 0.401* 0.327 0.284 0.000 0.309
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Table C3: Interest Rates

Daily

Hist Exp Dexp BEKK GARCHCC
125 day window
ME 0.000%* -0.001 0.168 -0.006 -0.017
MAE 0.068 0.067* 0.253 0.093 0.089
RMSE 0.283*% 0.284 2.161 0.570 0.415
MAPE 90.571 1 388.708 464.170 469.233 5.818*
MMEU 1.824% 1.905 2.484 3.055 2.361
MMEO 3.932 3.654 7.205 3.274% 4.498
R’ 0.041%* 0.039 0.017 0.004 0.036
250 day window
ME 0.001* -0.001 0.122 -0.001 -0.012
MAE 0.069 0.067* 0.204 0.102 0.087
RMSE 0.287 0.284* 1.367 0.600 0.399
MAPE 90.406 1 388.757 436.538 113.641 5.566*
MMEU 1.779* 1.904 2.346 3.180 2.254
MMEO 4.078 3.656 7.054 3.419*% 4.693
R’ 0.029 0.039* 0.013 0.000 0.020
500 day window
ME 0.008 -0.001* 0.106 0.007 0.001
MAE 0.076 0.067* 0.187 0.111 0.093
RMSE 0.296 0.284%* 0.951 0.553 0.361
MAPE 243.407 1 388.757 398.508 1 147.206 6.641%
MMEU 1.746* 1.904 2.277 3.225 2.201
MMEO 4.488 3.656% 7.180 3.722 5.215
R? 0.015 0.039 0.028 0.001 0.072%
750 day window
ME 0.013 -0.001* 0.061 0.020 0.013
MAE 0.080 0.067* 0.141 0.124 0.104
RMSE 0.301 0.284% 0.429 0.785 0.367
MAPE 231.027 1 388.757 326.254 1778.201 9.810%
MMEU 1.715% 1.904 2.048 3.256 2.228
MMEO 4.756 3.656* 7.401 3.824 5.750
R’ 0.013 0.039%* 0.012 0.001 0.030
1 250 day window
ME 0.032 -0.001* 0.056 0.096 0.041
MAE 0.097 0.067* 0.138 0.200 0.119
RMSE 0.424 0.284* 0.428 2.140 0.469
MAPE 346.281* 1 388.757 3019.276 2321.331 806.829
MMEU 1.684*% 1.904 2.156 3.422 2.081
MMEO 5.177 3.656%* 6.957 4.248 6.279

R’ 0.020 0.039* 0.010 0.002 0.028
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Table C4: Interest Rates

Quarter-average

Hist Exp Dexp BEKK GARCHCC
125 day window
ME 0.000%* 0.000 0.169 0.028 0.175
MAE 0.033* 0.037 0.219 0.092 0.225
RMSE 0.081%* 0.082 2.166 0.685 2.348
MAPE 4.626 6.410 17.833 2.361% 39.055
MMEU 2.114% 2.374 2971 4.113 3.060
MMEO 2.225 2.161% 5.573 2.433 5.959
R’ 0.191 0.209* 0.036 0.017 0.000
250 day window
ME 0.002 0.000%* 0.123 0.036 0.040
MAE 0.034* 0.037 0.170 0.103 0.068
RMSE 0.090 0.082%* 1.351 0.756 1.083
MAPE 5.597 6.412 14.340 3.256% 12.369
MMEU 2.002 2.373 2.766 4217 1.991%
MMEO 2.343 2.162% 5.352 2.559 3.417
R? 0.167 0.209* 0.049 0.017 0.006
500 day window
ME 0.009 0.000%* 0.107 0.053 0.062
MAE 0.041 0.037* 0.154 0.123 0.098
RMSE 0.110 0.082% 0.935 0.884 0.880
MAPE 7.082 6.412 15.057 3.701% 11.379
MMEU 2.010 2.373 2.700 4298 2.282%
MMEO 2.774 2.162*% 5.524 2.869 4.365
R’ 0.126 0.209*% 0.054 0.032 0.013
750 day window
ME 0.014 0.000%* 0.062 0.069 0.062
MAE 0.044 0.037* 0.098 0.139 0.098
RMSE 0.122 0.082*% 0.313 1.058 0.726
MAPE 8.467 6.412% 14.021 14.118 12.450
MMEU 1.888* 2.373 2.120 4.321 2.187
MMEO 3.057 2.162% 5.631 3.047 4.983
R’ 0.107 0.209* 0.052 0.009 0.013
1 250 day window
ME 0.033 0.000%* 0.056 0.453 0.073
MAE 0.063 0.037*% 0.096 0.527 0.106
RMSE 0.345 0.082%* 0.308 10.772 0.565
MAPE 10.097 6.412% 17.106 8.469 12.484
MMEU 1.814%* 2.373 2.284 4.826 2.050
MMEO 3.572 2.162% 5.099 3.876 5.394
R? 0.053 0.209* 0.054 0.008 0.051
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Table C5: Foreign Exchange Variances
Variance — daily

Hist Exp Dexp BEKK GARCHCC

125 day window

ME 0.00001 0.00001 0.00000 0.00002 0.00001
MMEU 0.00210 0.00210 0.00210 0.00243 0.00208
MMEO 0.00470 0.00451 0.00530 0.00421 0.00473
250 day window

ME 0.00001 0.00001 0.00000 0.00001 0.00001
MMEU 0.00212 0.00210 0.00203 0.00224 0.00207
MMEO 0.00473 0.00451 0.00532 0.00435 0.00464
500 day window

ME 0.00001 0.00001 0.00003 0.00006 0.00001
MMEU 0.00201 0.00210 0.00184 0.00217 0.00209
MMEO 0.00482 0.00451 0.00631 0.00437 0.00459
750 day window

ME 0.00001 0.00001 0.00004 0.00000 0.00001
MMEU 0.00203 0.00210 0.00163 0.00213 0.00206
MMEO 0.00494 0.00451 0.00682 0.00444 0.00461
1 250 day window

ME 0.00001 0.00001 0.00000 0.00001 0.00001
MMEU 0.00201 0.00210 0.00232 0.00211 0.00204
MMEO 0.00513 0.00451 0.00444 0.00458 0.00472

Table C6: Foreign Exchange Variances
Variance — quarter-average
Hist Exp Dexp BEKK GARCHCC

125 day window

ME 0.00000 0.00000 0.00000 0.00004 0.00001
MMEU 0.00201 0.00235 0.00212 0.00388 0.00205
MMEO 0.00232 0.00216 0.00322 0.00293 0.00251
250 day window

ME 0.00000 0.00000 0.00000 0.00017 0.00000
MMEU 0.00202 0.00235 0.00201 0.00435 0.00196
MMEO 0.00233 0.00216 0.00332 0.00260 0.00242
500 day window

ME 0.00000 0.00000 0.00002 -0.00001 0.00000
MMEU 0.00192 0.00235 0.00133 0.00436 0.00188
MMEO 0.00234 0.00216 0.00434 0.00172 0.00232
750 day window

ME 0.00000 0.00000 0.00003 -0.00001 0.00000
MMEU 0.00182 0.00235 0.00082 0.00415 0.00187
MMEO 0.00243 0.00216 0.00521 0.00188 0.00234
1 250 day window

ME 0.00000 0.00000 -0.00001 0.00338 0.00000
MMEU 0.00172 0.00235 0.00303 0.00735 0.00177
MMEO 0.00273 0.00216 0.00202 0.00320 0.00267
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Table C7: Interest Rate Variances
Variance — daily

Hist Exp Dexp BEKK GARCHCC

125 day window

ME 0.00000 0.00000 0.00025 0.00006 -0.00002
MMEU 0.00274 0.00276 0.00353 0.00278 0.00285
MMEO 0.00651 0.00595 0.01202 0.00652 0.00599
250 day window

ME 0.00001 0.00000 0.00026 0.00008 -0.00001
MMEU 0.00272 0.00276 0.00311 0.00305 0.00276
MMEO 0.00693 0.00595 0.01145 0.00694 0.00636
500 day window

ME 0.00003 0.00000 0.00026 0.00011 0.00002
MMEU 0.00262 0.00276 0.00307 0.00313 0.00271
MMEO 0.00774 0.00595 0.01155 0.00783 0.00715
750 day window

ME 0.00005 0.00000 0.00010 0.00016 0.00004
MMEU 0.00262 0.00276 0.00268 0.00308 0.00275
MMEO 0.00833 0.00595 0.01105 0.00851 0.00804
1 250 day window

ME 0.00014 0.00000 0.00018 0.00051 0.00014
MMEU 0.00262 0.00276 0.00282 0.00351 0.00253
MMEO 0.00951 0.00595 0.01054 0.01049 0.00927

Table C8: Interest Rate Variances
Variance — quarter-average
Hist Exp Dexp BEKK GARCHCC

125 day window

ME 0.00001 0.00000 0.00026 0.00020 0.00066
MMEU 0.00342 0.00382 0.00436 0.00354 0.00390
MMEO 0.00378 0.00351 0.01016 0.00720 0.01240
250 day window

ME 0.00001 0.00000 0.00026 0.00024 0.00015
MMEU 0.00325 0.00382 0.00396 0.00381 0.00272
MMEO 0.00422 0.00351 0.00954 0.00773 0.00546
500 day window

ME 0.00003 0.00000 0.00030 0.00032 0.00022
MMEU 0.00325 0.00382 0.00382 0.00402 0.00319
MMEO 0.00516 0.00351 0.00975 0.00894 0.00715
750 day window

ME 0.00005 0.00000 0.00015 0.00038 0.00020
MMEU 0.00305 0.00382 0.00296 0.00391 0.00301
MMEO 0.00562 0.00351 0.00894 0.00984 0.00815
1 250 day window

ME 0.00014 0.00000 0.00019 0.00213 0.00024
MMEU 0.00305 0.00382 0.00324 0.00594 0.00271
MMEO 0.00704 0.00351 0.00832 0.01391 0.00910
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