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This article deals with the Value at Risk concept as it is used in practice. We show that,
like the Gaussian distribution, elliptical distributions lend themselves to simple practical
computations. All necessary computations are detailed for the symmetric hyperbolic
distributions. A test on real stock market and exchange rate data shows the new distri-
butions fit the data better and outperform equivalent estimators used in
RiskMetrics™.1 © 2000 Elsevier Science Inc.
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I. Introduction
The modeling of financial time series generally proceeds in one of two main directions.
The first is to model the process itself (this is common in the univariate case), and the
second is to model the distribution of the price change (common in the more complicated
multivariate case). It is well known that the real distribution of the percentage price change
is not Gaussian for it has fatter tails and a thinner waist than the Gaussian distribution. For
the univariate case, some approaches such as ARCH-type processes in Bollerslev et al.
(1992) or Levy processes based on hyperbolic distributions in Eberlein and Keller (1995)
take this into account. However, many multivariate applications, like the widely used
value-at-risk concept (VaR) measuring the risk of a certain portfolio, are still based on
normally distributed random variables. These distributions are considered the only ones
simple enough to allow rapid computations.2

To remedy this problem, we show that a more general class of distributions, namely the
elliptical distributions, can be used for calculating the VaR with little additional effort, but
with much better fits to the data. For practical reasons, one additionally needs simply
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1 The risk management system RiskMetrics™ by J. P. Morgan is probably the most widely spread
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computable marginal distributions, efficient simulation algorithms, and good estimation
procedures. One class of multivariate distributions with these properties is the class of
symmetric hyperbolic distributions to be introduced in Section III. All necessary calcu-
lation algorithms, formulas, and generators for random variables are provided in the same
section and the Appendix.

II. The Value-at-Risk Concept
Let PV(r) denote the present value of a given portfolio at pricer of the underlying assets.
DPVr(x) 5def PV(r z (1 1 x)) 2 PV(r) is the change in the value of the portfolio, if the asset
price moves 100x%.3 The value-at-risk of levelp (usuallyp 5 5% orp 5 1%) is defined
as the infimum value, such that

P~DPVr~ x! # 2VaR! # p. (1)

This implies that the probability of losing more than VaR isp. So the negative VaR is
simply the p-quantile of the distribution ofDPV and does, despite its name, not represent
the total risk structure of the portfolio. The distribution ofDPV is usually far from normal.
Portfolios with the same VaR of levelp may have various conditional expected losses, if
the value falls below the VaR. Presenting a VaR of a second level, for example, 5% and
1%, or categorizingDPV to flat, semi-heavy or heavy tailed would allow a better
understanding of the risk structure.

The critical point, however, is the stochastic nature of the movex. Present risk
management systems often supposex to be normally distributed and estimate the param-
eters from the past data. Once the distribution in the model is defined, one has three
distribution dependent ways, beside historic simulation, to estimate the VaR:

● the structured Monte–Carlo-Simulation,
● the d-method for linear portfolios and
● the dG-method for portfolios containing nonlinear assets like options.

The structured Monte–Carlo method estimates the distribution ofDPVr(x) by simulat-
ing a large number of random variablesx and calculating the resulting change of value of
the portfolio. One therefore needs efficient generators for the distribution ofx.

In linear portfolios, for example, portfolios containing no derivatives, the value of the
portfolio is justa1T, if the components of the vectora refer to the value of a particular
asset in the portfolio. This meansa 5 a z r, wherea is the vector containing the number
of shares of each asset. This obviously yieldsDPVr(x) 5 axT. This simple relation implies
an easy formula for the VaR, ifx is elliptically distributed.

The distributionF of a random vectorX is called elliptic, if there exists a nonsingular
matrix G, so that the distribution ofXG is rotation-symmetric. For elliptic distributions,
there is a representation of the densityf of F, which containsX only as (X 2 m)C 21(X 2
m)T, wherem is the parameter of location andC 5 lGGT a positive definite, symmetric
matrix. C is called the scale matrix ofF, because,l appropriately chosen, any change of
scale4 in X will result only in an equivalent change inm andC. Let h be an eigenvector

3 x is the vector of the percentual price chages of each asset and1 is a vector containing 1 in every
component. As product we use the usual vector product.

4 To be more precise any regular, affine transformationX3 XA1 b will changem to mA 1 b andC to ATCA.
All other parameters off remain unchanged.
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of C with eigenvaluelh and ^h& the one-dimensional subspace spanned byh. Fh is the
one-dimensional projection ofF on the line^h& normed by the square root oflh. Fh is
independent of the choice ofh and called the one-dimensional distribution ofF. Let c(p)
denote thep-quantile ofFh.

If H is a tangent hyperplane to the ellipsoid (x 2 m)C21(x 2 m)T 5 c(p)2 in Rd and
Hp the half-space cut off byH, which is not containing the ellipsoid, thenP(x [ Hp) 5
p. This is obvious by the definition ofc(p), if H is normal to an eigenvectorh of C. The
other cases can easily be derived using the “elliptical symmetry” ofF.

It is well known that the minimum of a linear functionaxT under the conditionxC21xT 5
c2, C positive definite, is attained at the pointx0 5 2(c/=aCaT)aCwith value2c=aCaT.
Combining these two facts, one gets the following:5

Lemma 1: The Value-at-Risk at level p of a linear portfolio a with an elliptic
distribution F of the percentage change x of the asset prices is

VaR5 2c~ p!ÎaCaT 1 amT, (2)

where C is the scale matrix of F,m the parameter of location and c(p) the p-quantile of
the one-dimensional distribution of F.

This result holds only for positive definite matrices. However, this formula for the
computation of the VaR in practice is also used with nondefinite estimates of covariance
matrices.

The dG-method is the Taylor approximation of degree 2 of the value function of the
portfolio. DPVr(x) ' dx 1 0.5xGxT 1 ut, with d 5 ­PVr /­x(x), G 5 ­2PVr /­x2 (x) and
ut is the time-dependent value to maturity. There are various (not completely satisfying)
methods to estimate the VaR of this approximation, for example, fitting Johnson curves
in RiskMetrics™, Longerstaey et al. (1996) or nonlinear minimum problems in Haaf
(1996), if the price changex is normally distributed. All of these can be extended to
symmetric hyperbolic distributions.6

Two further practical requirements for the model used shall now be specified. Firstly,
working with many portfolios necessitates a very fast calculation of the parameters of the
estimated distribution. So far this is done by estimating the parameters for the distribution
of a huge variety of assets (general distribution) in overnight computations. The user then
obtains this time-intensive result and is able to calculate thereof the parameters of the
marginal distribution of the assets used in a certain portfolio very quickly. Using the
Gaussian distribution model, this just means taking the relevant part of the mean vector
and the covariance matrix. We will show that getting the parameters for the marginal
distribution of a symmetric hyperbolic distribution is equally simple. Secondly, the
distribution of the price change of assets seems to be nonconstant over time.7 So the
commonly used estimators, like the exponentially weighted estimator in RiskMetrics™,
Longerstaey et al. (1996), use rather little of the past data and/or weigh recent data more
than past data.

5 See Bauer (1998) for an explicit proof.
6 The approximation is a linear combination of termsxi andxixj. To estimate its moments one only needs to

estimates the moments ofx. These can be calculated from the parameterestimates given in Section IV.
7 This is indicated by structures as e.g. volatility clustering.
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III. The Symmetric Hyperbolic Distribution
In 1977, Barndorff–Nielsen (1977) introduced the family of generalized hyperbolic
functions. Thed-dimensional density functionHd has six parameters:d and D for
multivariate scales,m for location,b for skewness, anda andl mainly change the tails.8

We have

Hd~a, b, d, m, D, l!~ x!

5
kla~1/ 2!d2l

~2p!~1/ 2!ddlKl~dk!

Kl2~1/ 2!d~a@d2 1 ~ x 2 m!D21~ x 2 m!T#1/ 2!

@d2 1 ~ x 2 m!D21~ x 2 m!T#1/ 2~~1/ 2!d2l! eb~ x2m!T, (3)

with k 5 =a2 2 bDbT, D a symmetric, positive definited 3 d-matrix with determinant
1 andKn the modified Bessel function of the third kind.9 It is a well known theorem of
Blæsild, that the family of generalized hyperbolic distributions is closed under regular
affine transformations and with respect to formation of marginal and conditional distri-
butions.10 Blæsild explicitly describes the parameters of marginal, conditional or affine
transformed hyperbolic distributions. A direct result of this theorem are the following
lemma 2 and 3:11

Lemma 2: The parameterb is 0, iff the corresponding parameterb̂ of any one
dimensional marginal distribution is 0, i.e. the generalized hyperbolic distribution is
elliptic, iff all one dimensional marginal distributions are symmetric.

The one dimensional marginal distributions are normal hyperbolic distributions, iff the
generalizing parameterl is 1.

A generalized hyperbolic distribution with parametersb 5 0 andl 5 1 is therefore
called a symmetric hyperbolic distribution. We denote the densityE and replace the
parametera with z 5def ad:

Ed~z, d, m, D!~x! 5
zd 1

~2p!~1/ 2!dddK1~z!

K12~1/ 2!dSzÎ1 1
x 2 m

d
D21

x 2 mT

d
D

SzÎ1 1
x 2 m

d
D21

x 2 mT

d
D~1/ 2!d21 . (4)

The scale matrix ofE is d2D.
We can specialise Blæsild’s theorem to the case of symmetric hyperbolic distributions.

Lemma 3 then states that the subfamily of symmetric hyperbolic distributions is closed
with respect to forming marginal distributions and regular affine transformations.

Lemma 3: Let X be a d-dimensional random vector distributed according to the
symmetric hyperbolic distribution Ed(z, d, m, D)(X). Given a partition(X1, X2) of X, with

8 a, d and l are real,m and b vector parameters. Usingl 5 1⁄2 (d 1 1) one gets the usual multivariate
hyperbolic distribution with density

k1/ 2~d11!

~2p!1/ 2~d21!2ad1/ 2~d11!K1/ 2~d11!~dk!
eaÎd21~ x2m!D21~ x2m!T1b~ x2m!T

9 Abramowitz and Stegun (1972) provide a description of the properties, approximation and computation
algorithms of the Bessel functions. The modified Bessel functions of the third kind are also known as MacDonald
functions.

10 See Blæsild (1981).
11 See Bauer (1998) for an explicit proof of the theorem and the corollaries with the used notation.
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r the dimension of X1, and analogously defined partitions(b1, b2) and(m1, m2). LetD have
block representation

D 5 SD11 D12

D21 D22
D ,

so thatD11 is a r 3 r-matrix. Then the following holds:

1. The distribution of X1 is a r-dimensional symmetric hyperbolic distribution Er(ẑ, d̂,
m̂, D̂) with parametersẑ 5 z, d̂ 5 duD11u

1/2r, m̂ 5 m1 and D̂ 5 uD11u
1/rD11.

2. Let Y5 XA1 B be a regular affine transformation of X andiAi denote the absolute
value of the determinant of A. Then Y is distributed according to the symmetric
hyperbolic distribution Ed(z#, d# , m# , D# ) with z# 5 z, d# 5 diAi1/d, m# 5 mA 1 B andD# 5
iAi2/dATDA.

We then need the moments of the distribution. The generalized hyperbolic distribution
is an exponential family with respect tob. So its moments can be derived from the partial
derivatives of the logarithm of the densities norming constant.12 We get

E~X 2 m! 5 0, (5)

E~~X 2 E~X!!2! 5 Cov~X! 5
K2~z!

zK1~z!
d2D, (6)

E~~X 2 E~X!!3! i , j ,k 5 0 and (7)

E~~X 2 E~X!!4! i , j ,k,l 5
K3~z!

z2K1~z!
d4~D i ,lD j ,k 1 D j ,lD i ,k 1 Dk,lD j ,i!. (8)

The interpretation of the 4 parameters is:m is a parameter of location,D defines only
the shape of the covariance matrix andd varies only its size, whilez is independent of
transformations of the parameters of scale and location and determines the relation
between the tails and the waist of the distribution. However, a change inz will result in
a change of the size of the covariance matrix.

There also exists an efficient generator for generalized hyperbolic random variables.
Atkinson (1982) suggested a two or three envelope rejection algorithm. It uses the fact that
the generalised hyperbolic distributions are mixed distributions. Ifs2 is an random
variable from an generalized inverse Gaussian distribution with parametersl, d2 andk2,
F the Cholesky decomposition ofD and Y a d-dimensional standard normal random
vector, thenX 5 sYFT 1 m 1 s2bD is distributed with respect toHd(a, b, d, m, D, l).

The algorithm for creating random variables from an generalized inverse Gaussian
distribution with parametersl, d2 andk2 simplifies, if we restrict the parameters tol 5
1 andb 5 0.13 Using small values ofz, as those estimated from the data used, it takes an

12 The ith derivative of2ln (kla1/2(d2l)/(2p)(1/2)ddlKl(dk)) with respect tob is theith cumulant ofHd(a, b,
d, m, D, l). With some calculation we get

E~X 2 m! 5
­

­b
ln S ~2p!~1/ 2!ddlKl~dk!

kla~1/ 2!d2l D 5
dKl11~dk!

kKl~dk!
bD,

which simplifies to 0 forb 5 0. The higher order moments can be derived in the same way.
13 A description is given in the Appendix.
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ISP-macro14 less than 1 min to generate 10 000 generalized inverse Gaussian random
variables.

The efficiency of the algorithm relies only onz and the algorithm creating normal and
uniformly distributed random variables. Creating high dimensional hyperbolically distrib-
uted random variables and a Monte–Carlo evaluation of a portfolio with many assets one
faces no more problems than if normal random vectors were used.

IV. Data and Estimation: A Comparison of the Gaussian and the
Hyperbolic Model
Estimating the parameters of a symmetric hyperbolic distribution is not as simple as it is
for a normal distribution. The Bessel functions make it impossible to obtain a closed
formula for a maximum likelihood estimator. Numerical approximations to ML estimators
of all parameters—the dimension of the parameter space is1

2
(d 1 1)(d 1 2)—face

enormous numerical problems, which we could not solve with justifiable efforts. How-
ever, the first two moments indicate some simple estimators form andD. According to
Fang and Zhang (1990) the ML-estimates for location and scale of an elliptical distribu-
tion are the mean and the empirical covariance matrix multiplied with real number
depending on the distribution. So we can choose various estimators for mean and variance,
when norming the covariance matrix to determinant 1. This leaves two parameters,d and
z, to be estimated. We suggest a two-step procedure. First calculate estimatesm̃ and D̃
from the data {xi} i51. . .n, then estimated and z from the transformed datavi 5 (xi 2
m̃)D̃1(xi 2 m̃)T. The simultaneous estimation ofd and z still needs care because the
likelihood function ofd andz is very flat, that is, various values ofd andz have almost
the same likelihood. The independence of the parameters makes a flat-tailed distribution
with a big scale look like a fat-tailed distribution with small scale over the set of data. The
likelihood function appears to have several local minima. We solved the problem using a
two-step procedure. First, we approximated the global maximum of the likelihood func-
tion with a lattice. We used an iterative procedure evaluating the likelihood function on
a lattice and put a tighter lattice around the minimum in the next step. In a second part,
we used the first approximation as a starting point for a Newton procedure.15

We use daily data of German stocks (Bayer, Deutsche Bank, and VW) and international
indices (DAX, Dow Jones, and Nikkei) from the years 1987 to 1997 to test our model. The
total length of the data set is 2240. In Figure 1 a quantile–quantile-plot of the DAX-data
against the estimated normal distribution and the estimated hyperbolic distribution shows
the flat tails of the Gaussian distribution.16

For a more detailed examination of the fit of one-dimensional hyperbolic distributions
to financial data, we refer to the papers of Eberlein and Keller (1995).

As remarked in Section II, the distribution of the price change seems to be non-constant
over time. We therefore use the same estimators as J. P. Morgan RiskMetrics™: an
exponential weighted estimator for the covariance matrixC̃t 5 const/n ¥i50

n 1 li(xt2i 2
m̃)(xt2i 2 m̃)T. Because we want to estimateD with determinant 1, we do not care for the
norming constant. The optimal value, according to J. P. Morgan, forl is 0.94 and forn
is 74.17 J. P. Morgan assumesm̃ [ 0, and we adapt this to keep the models comparable.

14 Interactive Scientific Processor is a statistical programme from Datavision AG.
15 See Bauer (1998) for the C11 source code.
16 We estimated the multivariate parameters and calculated the marginal distribution.
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We began with the estimation in 1987, and counted how often in the following 2 weeks
(10 data points) the estimated VaR for any single asset price was exceeded. We then
shifted the data used for estimation 10 days into the future, and went on. In all, the
estimation was repeated 216 times and 2160 data points were compared to the resulted
VaR-predictions. Table 1 shows the percentage of the exceedings for the hyperbolic and
the normal estimates.

Obviously the 5% Value at Risk is estimated quite well by both models, the hyperbolic
tends to be a little too high, the Gaussian model to be too low. However, the 1% VaR is
estimated correctly only by the hyperbolic model. The flat tails of the normal distributions
underestimate the VaR to a high extent

We also tested the model in the same way on data of exchange rates (US-Dollar, Yen
and French Franc) against the German Mark over the same period with similar results
shown in Table 2.

A comparison of a kernel density estimate of US-Dollar data to the estimated Gaussian
and the hyperbolic distribution shown in Figure 2 makes the problem of the flat tails
obvious.19

The symmetric hyperbolic model has another advantage. It contains the Gaussian
model as a limiting case. Ifd andz tend to infinity in such a way that

lim
d,z3`

d2

z
5 Îd c2,

Table 2. Results of VaR Estimation of Exchange Rate Data Using Hyperbolic and Gaussian
Models

Asset

p 5 5% p 5 1%

Hyperbolic Gaussian Hyperbolic Gaussian

Jap. Yen 4.90 6.03 1.31 2.75
US-Dollar 4.66 5.50 1.21 2.51
Fr. Franc18 5.19 6.32 2.18 3.62

17 So the weight of the last data that enters the estimate is approximately 1%.
18 The French Franc probably should be evaluated separately, because it was tied to the German Mark rather

strictly in the EMS compared to US-Dollar and Yen.
19 For data{xi} i51. . .n we estimatef(X) 5 1/n¥i51

n Kr(xi2X) using a Picard type kernelKr(x) 5 (1/r)eruxu with
r 5 1000.

Table 1. Results of VaR Estimation of Stock Data Using Hyperbolic and Gaussian Models

Asset

p 5 5% p 5 1%

Hyperbolic Gaussian Hyperbolic Gaussian

DJII 4.71 5.90 1.07 1.83
DAX 4.17 4.87 1.36 2.31
Nikkei 5.15 6.70 2.13 3.14
Bayer 4.95 5.79 1.21 2.31
Dt. Bank 4.47 5.21 1.31 2.60
VW 4.02 5.60 1.21 2.07
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then the hyperbolic distribution tends to a Gaussian distribution with covariance matrix
C 5 Îdc2D. Estimating hyperbolic parameters of two-dimensional, simulated normal data
resulted inz-estimates of 300–500.z-estimates for any of the data lay between 2 and 5,
indicating that the data are far from normal.

We see that the VaR at level 5% is obtained quite well by both models. This may be
due to the fit of the covariance estimator, that is, the choice ofl 5 0.94 andn 5 74. The
VaR on lower levels is underestimated by the Gaussian model. To be able to judge the risk
of a portfolio one needs more than just the VaR on only one level, for example, a second
VaR, a category like heavy-tailed or flat-tailed or even the whole risk structure. Using the
VaR estimated on Gaussian random variables will result in a misrepresentation of the real
risk.

V. Conclusions
The symmetric hyperbolic distributions fit financial data better than the Gaussian distri-
bution. Calculating the VaR on the basis of symmetric hyperbolic random variables, one
gets more precise results for all levelsp simultaneously. Using the normal distribution the
estimators may only be adapted to a single level (p 5 5% in the example) and yield biased
results elsewhere. This does not allow a sufficient representation of the portfolio risk
structure. The necessary calculations using hyperbolic distributions are nearly as easy and
fast as in the Gaussian case.

Appendix: The Loglikelihood Function for z and d
We present here the loglikelihood functionl for z andd after having estimatedm andD
from a set of datax 5 (xi)i51. . .n. We writevi 5 (xi 2 m)D21(xi 2 m)T [ R. In practice
we use the estimatesṽ i derived from the estimatesm̃ and D̃. Another abbreviation is
Qn(x) 5def Kn11(x)/Kn(x).

Figure 1. QQ-plot of DAX data against estimated normal (ŝ 5 0.00917) and hyperbolic distribu-
tion (ẑ 5 2.16 andd̂ 5 0.101).
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l ~ x! 5def 2ln P
i51

n
zd21

~2p!~1/ 2!dddK1~z!

K12~1/ 2!dSzÎ1 1
v i

d2D
SzÎ1 1

v i

d2D ~1/ 2!d21

5 c 2 n~d ln z 2 d ln d 2 ln ~K1~z!z!! 2 O
i51

n

ln

K12~1/ 2!dSzÎ1 1
v i

d2D
SzÎ1 1

v i

d2D ~1/ 2!d21 . (9)

The derivatives—necessary for the Newton method to obtain the ML-estimate—with
respect toz andd are:

­l

­z
5 2nSd

z
1 Q1~z!D 1 O

i51

n

Q~1/ 2!d21SzÎ1 1
v i

d2D Î1 1
v i

d2 ,

­l

­d
5 n

d

d
1 O

i51

n

Q~1/ 2!d21SzÎ1 1
v i

d2Dz
1

2Î1 1
v i

d2

v i~22d3!

5 n
d

d
2 O

i51

n

Q~1/ 2!d21SzÎ1 1
v i

d2DzÎ1 1
v i

d2

v i

d3 1 v id
,

Figure 2. Plot of the kernel density estimation, the estimated hyperbolic (ẑ 5 2.16 andd̂ 5 0.101)
and the estimated Gaussian density (ŝ 5 0.00696) for the US-Dollar data.
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­2l

­z2 5 2nS2d

z2 1 Q2
1~z! 1

1

z
Q1~z! 2 1D

1O
i51

n S1 1
vi

d2D1Q~1/2!d21
2 SzÎ1 1

vi

d2D2
d 2 1

zÎ1 1
vi

d2

Q~1/2!d21SzÎ1 1
vi

d2D212,
­2l

­d2 5 2n
d

d2 2 O
i51

n SQ~1/ 2!d21SzÎ1 1
v i

d2DzÎ1 1
v i

d2

2v i~3d2 1 v i!

~d3 1 v id!2

1 1Q~1/ 2!d21
2 SzÎ1 1

v i

d2D 2
d 2 2

zÎ1 1
v i

d2

Q~1/ 2!d21SzÎ1 1
v i

d2D 2 12
zÎ1 1

v i

d2 z
22v id

3

2Î1 1
v i

d2

v i

d3 1 v id2
5 2n

d

d2 1O
i51

n z2vi
2

d4~d2 1 vi! 1Q~1/2!d21
2 SzÎ1 1

vi

d2D21 d 2 2

zÎ1 1
vi

d2

2
3d2 1 vi

vizÎ1 1
vi

d22
z Q~1/2!d21SzÎ1 1

vi

d2D2 12
and

­2l

­d­z
5 2 O

i51

n

1Q~1/ 2!d21
2 SzÎ1 1

v i

d2D 2
d 2 2

zÎ1 1
v i

d2

Q~1/ 2!d21SzÎ1 1
v i

d2D 2 12
zÎ1 1

v i

d2 Î1 1
v i

d2

v i

d3 1 v id
5 2 O

i51

n
v iz

d3 1Q~1/ 2!d21
2 SzÎ1 1

v i

d2D

2
d 2 2

zÎ1 1
v i

d2

Q~1/ 2!d21SzÎ1 1
v i

d2D 2 12 .

The ML-estimation routine was written in C11. With values {vi} i51. . .1000as input it
takes roughly 3 minutes to perform the estimation on a Pentium 133.
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An Algorithm for Creating Random Variables from a Generalized Inverse
Gaussian Distribution with Parameters 1,d2, and z2

This algorithm is based on Atkinson (1982). To maximize the efficiency of the algorithm
one first needs to find two numberss1 $ 0 minimizing

f1 5def
1
s1

SexpSs1d

z D 2 1D exp~2dÎz2 1 2s1!

ands2 [ [2z2, 0] minimizing

f2 5def
1
s2

exp Ss2d

z D exp(2dÎz2 1 2s2).

The efficiency of the algorithm is reziprocal tof1 1 f2. Due to Atkinson a numerical
approximation of the minima is sufficient for an acceptable performance. However in
most cases even constants likes1 5 z2/2 ands2 5 2z2/2 are acceptable.

begin

create independent random variablesu andv uniformly distributed on (0, 1)

if u #
f1

f1 1 f2

then

x 5
1

s1
ln ~1 1 us1~ f1 1 f2! exp~dÎz2 1 2s1!!

if ln~v! # 2
z2 1 ~z2 1 2s1! x2

2x
1 dÎz2 1 2s1

thenend

elsegotobegin

fi

else

x 5
1

s2
ln (2s2~1 2 u!~ f1 1 f2! exp~dÎz2 1 2s2!)

if ln~v! # 2
z2 1 ~z2 1 2s2! x2

2x
1 dÎz2 1 2s2

thenend

elsegotobegin

fi

fi
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Thenx is distributed according to the generalized inverse Gaussian distribution with
parameters 1,d2 andz2. So if Y is a d-dimensional normal random vector,m a location
vector andF the Cholesky decomposition ofD, then the random vectorX 5 =xYFT 1
m is distributed according toEd(z, d, m, D).

The author would like to thank Prof. Dr. P. J. Huber, Dr. E. Tabakis, and two unknown referees for valuable
comments.
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