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Value at Risk Using Hyperbolic Distributions

Christian Bauer

This article deals with the Value at Risk concept as it is used in practice. We show that,
like the Gaussian distribution, elliptical distributions lend themselves to simple practical
computations. All necessary computations are detailed for the symmetric hyperbolic
distributions. A test on real stock market and exchange rate data shows the new distri-
butions fit the data better and outperform equivalent estimators used in
RiskMetrics™? © 2000 Elsevier Science Inc.
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[. Introduction

The modeling of financial time series generally proceeds in one of two main directions.
The first is to model the process itself (this is common in the univariate case), and the
second is to model the distribution of the price change (common in the more complicated
multivariate case). It is well known that the real distribution of the percentage price change
is not Gaussian for it has fatter tails and a thinner waist than the Gaussian distribution. For
the univariate case, some approaches such as ARCH-type processes in Bollerslev et a
(1992) or Levy processes based on hyperbolic distributions in Eberlein and Keller (1995)
take this into account. However, many multivariate applications, like the widely used
value-at-risk concept (VaR) measuring the risk of a certain portfolio, are still based on
normally distributed random variables. These distributions are considered the only ones
simple enough to allow rapid computatiohs.

To remedy this problem, we show that a more general class of distributions, namely the
elliptical distributions, can be used for calculating the VaR with little additional effort, but
with much better fits to the data. For practical reasons, one additionally needs simply
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1The risk management system RiskMetrics™ by J. P. Morgan is probably the most widely spread
implementation of the VaR concept. It is therefore used as reference.
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computable marginal distributions, efficient simulation algorithms, and good estimation
procedures. One class of multivariate distributions with these properties is the class of
symmetric hyperbolic distributions to be introduced in Section Ill. All necessary calcu-
lation algorithms, formulas, and generators for random variables are provided in the same
section and the Appendix.

[I. The Value-at-Risk Concept

Let PV(r) denote the present value of a given portfolio at pricd the underlying assets.
APV,(X) & PV(r - (1 + X)) — PV(r) is the change in the value of the portfolio, if the asset
price moves 1062 The value-at-risk of leveb (usuallyp = 5% orp = 1%) is defined

as the infimum value, such that

P(APV,(x) = —VaR) = p. (@)

This implies that the probability of losing more than VaRpisSo the negative VaR is
simply the p-quantile of the distribution d&fPV and does, despite its name, not represent
the total risk structure of the portfolio. The distribution&®V is usually far from normal.
Portfolios with the same VaR of levelmay have various conditional expected losses, if
the value falls below the VaR. Presenting a VaR of a second level, for example, 5% and
1%, or categorizingAPV to flat, semi-heavy or heavy tailed would allow a better
understanding of the risk structure.

The critical point, however, is the stochastic nature of the mev@&resent risk
management systems often supprs$e be normally distributed and estimate the param-
eters from the past data. Once the distribution in the model is defined, one has three
distribution dependent ways, beside historic simulation, to estimate the VaR:

® the structured Monte—Carlo-Simulation,
® the 8-method for linear portfolios and
® the dI'-method for portfolios containing nonlinear assets like options.

The structured Monte—Carlo method estimates the distributiaxPdf(x) by simulat-
ing a large number of random variabbeand calculating the resulting change of value of
the portfolio. One therefore needs efficient generators for the distribution of

In linear portfolios, for example, portfolios containing no derivatives, the value of the
portfolio is justal', if the components of the vectarrefer to the value of a particular
asset in the portfolio. This meaas= « - r, wherew is the vector containing the number
of shares of each asset. This obviously yield®/.(x) = ax". This simple relation implies
an easy formula for the VaR, ¥ is elliptically distributed.

The distributionF of a random vectoK is called elliptic, if there exists a honsingular
matrix I", so that the distribution oKI" is rotation-symmetric. For elliptic distributions,
there is a representation of the dengibf F, which containX only as K — w)C ~*(X —
w)', wherepu is the parameter of location ar@ = AI'T" a positive definite, symmetric
matrix. C is called the scale matrix d¥, because) appropriately chosen, any change of
scalé in X will result only in an equivalent change p andC. Let h be an eigenvector

3x is the vector of the percentual price chages of each assetldada vector containing 1 in every
component. As product we use the usual vector product.

4To be more precise any regular, affine transformater XA + b will changew to uA + bandCto A'"CA
All other parameters of remain unchanged.
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of C with eigenvalue),, and(h) the one-dimensional subspace spanned.bly,, is the
one-dimensional projection df on the line(h) normed by the square root af,. F,, is
independent of the choice afand called the one-dimensional distributionFofLet ¢(p)
denote thep-quantile ofF,.

If H is a tangent hyperplane to the ellipsoid € w)C X(x — w)" = ¢(p)? in R and
H, the half-space cut off bid, which is not containing the ellipsoid, thét{x € H,) =
p. This is obvious by the definition af(p), if H is normal to an eigenvectdrof C. The
other cases can easily be derived using the “elliptical symmetry. of

It is well known that the minimum of a linear functi@x’ under the conditioxC *x" =
¢?, C positive definite, is attained at the poigt= —(c/VaCa')aC with value—cVaCa'.
Combining these two facts, one gets the followmg:

Lemma 1:The Value-at-Risk at level p of a linear portfolio a with an elliptic
distribution F of the percentage change x of the asset prices is

VaR= —c(p)aCa’ + au', (2)

where C is the scale matrix of kg, the parameter of location and c(p) the p-quantile of
the one-dimensional distribution of F.

This result holds only for positive definite matrices. However, this formula for the
computation of the VaR in practice is also used with nondefinite estimates of covariance
matrices.

The éI'-method is the Taylor approximation of degree 2 of the value function of the
portfolio. APV,(x) =~ 8x + 0.5I'x" + 07, with & = 9PV,/ax(X), I = 9°PV,/ax* (x) and
0t is the time-dependent value to maturity. There are various (not completely satisfying)
methods to estimate the VaR of this approximation, for example, fitting Johnson curves
in RiskMetrics™, Longerstaey et al. (1996) or nonlinear minimum problems in Haaf
(1996), if the price chang& is normally distributed. All of these can be extended to
symmetric hyperbolic distributiorfs.

Two further practical requirements for the model used shall now be specified. Firstly,
working with many portfolios necessitates a very fast calculation of the parameters of the
estimated distribution. So far this is done by estimating the parameters for the distribution
of a huge variety of assets (general distribution) in overnight computations. The user then
obtains this time-intensive result and is able to calculate thereof the parameters of the
marginal distribution of the assets used in a certain portfolio very quickly. Using the
Gaussian distribution model, this just means taking the relevant part of the mean vector
and the covariance matrix. We will show that getting the parameters for the marginal
distribution of a symmetric hyperbolic distribution is equally simple. Secondly, the
distribution of the price change of assets seems to be nonconstant over $iméhe
commonly used estimators, like the exponentially weighted estimator in RiskMetrics™,
Longerstaey et al. (1996), use rather little of the past data and/or weigh recent data more
than past data.

> See Bauer (1998) for an explicit proof.

° The approximation is a linear combination of termandyx;. To estimate its moments one only needs to
estimates the moments ®f These can be calculated from the parameterestimates given in Section IV.

7 This is indicated by structures as e.g. volatility clustering.
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[ll. The Symmetric Hyperbolic Distribution

In 1977, Barndorff-Nielsen (1977) introduced the family of generalized hyperbolic
functions. Thed-dimensional density functiotdy has six parametersd and A for
multivariate scalesy for location, 8 for skewness, and and\ mainly change the taif%.

We have

Hd(aa B7 81 ~, Aa )\)(X)

_ KMo H2d7A Ky-2a(a[ 8 + (x — A H(x — w)]¥?)
- (277)(1/2)d8/\K)\(8K) [82 + (x— M)Afl(x _ M)T]llZ((l/Z)df)\)

with k = Vo® — BABT, A a symmetric, positive definitd X d-matrix with determinant

1 andK, the modified Bessel function of the third kifdt is a well known theorem of
Bleesild, that the family of generalized hyperbolic distributions is closed under regular
affine transformations and with respect to formation of marginal and conditional distri-
butions® Bleesild explicitly describes the parameters of marginal, conditional or affine
transformed hyperbolic distributions. A direct result of this theorem are the following
lemma 2 and 3%

Lemma 2:The parameterB is 0, iff the corresponding parametgs of any one
dimensional marginal distribution is 0, i.e. the generalized hyperbolic distribution is
elliptic, iff all one dimensional marginal distributions are symmetric.

The one dimensional marginal distributions are normal hyperbolic distributions, iff the
generalizing parametek is 1.

A generalized hyperbolic distribution with paramet@s= 0 andA = 1 is therefore
called a symmetric hyperbolic distribution. We denote the derSignd replace the

parametelx with { £ «a8:
X—p  X—u'
[ Kl(l/2)d<§\/1 + 5 A 5 )

Ey(& 8, 1, A)(X) = (277)(1/2)d8dKl(§) X — X — n\y2d-1 (4)
(g\/1+ Hat 8“ )

eﬁ(xw)T, (3)

1)

The scale matrix o is 82A.

We can specialise Blaesild’'s theorem to the case of symmetric hyperbolic distributions.
Lemma 3 then states that the subfamily of symmetric hyperbolic distributions is closed
with respect to forming marginal distributions and regular affine transformations.

Lemma 3:Let X be a d-dimensional random vector distributed according to the
symmetric hyperbolic distributiond&, 8, u, A)(X). Given a partition(X,, X,) of X, with

8, 8 and A are real,u and B vector parameters. Using = %2 (d + 1) one gets the usual multivariate
hyperbolic distribution with density

Kl/ 2(d+1)

@ /O (X= ) AT (X= )T+ B(x—p)T
(217) 1/ 2(d71)2a61/2(d+1)K1/2(d+l)(8K)

° Abramowitz and Stegun (1972) provide a description of the properties, approximation and computation
algorithms of the Bessel functions. The modified Bessel functions of the third kind are also known as MacDonald
functions.

19See Bleesild (1981).

11 See Bauer (1998) for an explicit proof of the theorem and the corollaries with the used notation.



Hyperbolic Value-at-Risk 459

r the dimension of X and analogously defined patrtitiorfg,, 8,) and(u,, w,). LetA have
block representation

_ A11 AlZ)
A= (AZI Az)’
so thatA;; is a r X r-matrix. Then the following holds:

1. The distribution of Xis a r-dimensional symmetric hyperbolic distributiop(& 5,

fi, A) with parameters’ = ¢, § = 8|A; /Y, 1 = uy and A = |A,|Y"A,,.

2. Let Y= XA + B be a regular affine transformation of X afiél| denote the absolute
value of the determinant of A. Then Y is distributed according to the symmetric
hyperbolic distribution B(Z, 8, i, A) with £ = ¢, § = §|A|*, & = uA + B andA =
IAFATAA.

We then need the moments of the distribution. The generalized hyperbolic distribution
is an exponential family with respect @ So its moments can be derived from the partial
derivatives of the logarithm of the densities norming constaite get

E(XX—u) =0, (5)
K
E((X — E(X))?) = Cou(X) = ﬂjfé)) S2A, (6)
E(X — E(X))%;jx=0 and (7)
KD
E((X = EMX)ijx = 2K,(0) A A  + AjA  + AgiA)). (8)

The interpretation of the 4 parametersjisis a parameter of locatior defines only
the shape of the covariance matrix ahdaries only its size, whil€ is independent of
transformations of the parameters of scale and location and determines the relation
between the tails and the waist of the distribution. However, a changevih result in
a change of the size of the covariance matrix.

There also exists an efficient generator for generalized hyperbolic random variables.
Atkinson (1982) suggested a two or three envelope rejection algorithm. It uses the fact that
the generalised hyperbolic distributions are mixed distributionss?lfis an random
variable from an generalized inverse Gaussian distribution with paramet&fsand <2,
® the Cholesky decomposition df and Y a d-dimensional standard normal random
vector, therX = oY®T + u + o®BA is distributed with respect tbl4(a, B, 8, w, A, ).

The algorithm for creating random variables from an generalized inverse Gaussian
distribution with parameters, 6% and x? simplifies, if we restrict the parameters o=
1 andB = 0.* Using small values of, as those estimated from the data used, it takes an

12Thei' derivative of—In (k*a2@-V/(27) 2482, (8k)) with respect t8 is theit" cumulant ofHy(«, B,
8, 1, A, A). With some calculation we get

(ZW)‘llz)dSAK)\(SK) _SK)\H(SK) A
K,\a(1/2)d—A - KK)\(SK) B ’

)
E(X—p,):%ln

which simplifies to 0 for8 = 0. The higher order moments can be derived in the same way.
13 A description is given in the Appendix.
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ISP-macro® less than 1 min to generate 10 000 generalized inverse Gaussian random
variables.

The efficiency of the algorithm relies only ahand the algorithm creating normal and
uniformly distributed random variables. Creating high dimensional hyperbolically distrib-
uted random variables and a Monte—Carlo evaluation of a portfolio with many assets one
faces no more problems than if normal random vectors were used.

V. Data and Estimation: A Comparison of the Gaussian and the
Hyperbolic Model

Estimating the parameters of a symmetric hyperbolic distribution is not as simple as it is
for a normal distribution. The Bessel functions make it impossible to obtain a closed
formula for a maximum likelihood estimator. Numerical approximations to ML estimators
of all parameters—the dimension of the parameter spa(%e(ds+ 1)d + 2)—face
enormous numerical problems, which we could not solve with justifiable efforts. How-
ever, the first two moments indicate some simple estimatorg.fand A. According to

Fang and Zhang (1990) the ML-estimates for location and scale of an elliptical distribu-
tion are the mean and the empirical covariance matrix multiplied with real number
depending on the distribution. So we can choose various estimators for mean and variance
when norming the covariance matrix to determinant 1. This leaves two parandedec,

£, to be estimated. We suggest a two-step procedure. First calculate estimateA

from the data },—, . then estimatéd and ¢ from the transformed data, = (% —
WAY(x — f)". The simultaneous estimation &fand ¢ still needs care because the
likelihood function ofé and{ is very flat, that is, various values éfand { have almost

the same likelihood. The independence of the parameters makes a flat-tailed distribution
with a big scale look like a fat-tailed distribution with small scale over the set of data. The
likelihood function appears to have several local minima. We solved the problem using a
two-step procedure. First, we approximated the global maximum of the likelihood func-
tion with a lattice. We used an iterative procedure evaluating the likelihood function on
a lattice and put a tighter lattice around the minimum in the next step. In a second part,
we used the first approximation as a starting point for a Newton procédure.

We use daily data of German stocks (Bayer, Deutsche Bank, and VW) and international
indices (DAX, Dow Jones, and Nikkei) from the years 1987 to 1997 to test our model. The
total length of the data set is 2240. In Figuk a quantile—quantile-plot of the DAX-data
against the estimated normal distribution and the estimated hyperbolic distribution shows
the flat tails of the Gaussian distributidf.

For a more detailed examination of the fit of one-dimensional hyperbolic distributions
to financial data, we refer to the papers of Eberlein and Keller (1995).

As remarked in Section Il, the distribution of the price change seems to be non-constant
over time. We therefore use the same estimators as J. P. Morgan RiskMetrics™: an
exponential weighted estimator for the covariance mafkix= consth S5 Al(x_; —

)(%_; — v)". Because we want to estimatewith determinant 1, we do not care for the
norming constant. The optimal value, according to J. P. Morgan\ 16r0.94 and fom
is 7417 J. P. Morgan assumgs= 0, and we adapt this to keep the models comparable.

14 Interactive Scientific Processor is a statistical programme from Datavision AG.
15 See Bauer (1998) for the-£+ source code.
16We estimated the multivariate parameters and calculated the marginal distribution.
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Table 1. Results of VaR Estimation of Stock Data Using Hyperbolic and Gaussian Models

p=5% p=1%

Asset Hyperbolic Gaussian Hyperbolic Gaussian
DJII 4.71 5.90 1.07 1.83
DAX 4.17 4.87 1.36 231
Nikkei 5.15 6.70 2.13 3.14
Bayer 4.95 5.79 121 231
Dt. Bank 4.47 5.21 131 2.60
VW 4.02 5.60 1.21 2.07

We began with the estimation in 1987, and counted how often in the following 2 weeks
(10 data points) the estimated VaR for any single asset price was exceeded. We ther
shifted the data used for estimation 10 days into the future, and went on. In all, the
estimation was repeated 216 times and 2160 data points were compared to the resulte
VaR-predictions. Table 1 shows the percentage of the exceedings for the hyperbolic and
the normal estimates.

Obviously the 5% Value at Risk is estimated quite well by both models, the hyperbolic
tends to be a little too high, the Gaussian model to be too low. However, the 1% VaR is
estimated correctly only by the hyperbolic model. The flat tails of the normal distributions
underestimate the VaR to a high extent

We also tested the model in the same way on data of exchange rates (US-Dollar, Yen
and French Franc) against the German Mark over the same period with similar results
shown in Table 2.

A comparison of a kernel density estimate of US-Dollar data to the estimated Gaussian
and the hyperbolic distribution shown in Figure 2 makes the problem of the flat tails
obvious®®

The symmetric hyperbolic model has another advantage. It contains the Gaussian
model as a limiting case. B and ¢ tend to infinity in such a way that

82 d/r2

lim < = {c?,
8,{—>» g \

Table 2. Results of VaR Estimation of Exchange Rate Data Using Hyperbolic and Gaussian

Models
p=5% p=1%
Asset Hyperbolic Gaussian Hyperbolic Gaussian
Jap. Yen 4.90 6.03 1.31 2.75
US-Dollar 4.66 5.50 121 251
Fr. Frand® 5.19 6.32 2.18 3.62

17 S0 the weight of the last data that enters the estimate is approximately 1%.

18 The French Franc probably should be evaluated separately, because it was tied to the German Mark rathe!
strictly in the EMS compared to US-Dollar and Yen.

*°For dataf}—;.  ,we estimatd(X) = 1/n Z{_; K (x—X) using a Picard type kernisl,(x) = (Up)e’™ with
p = 1000.
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Figure 1. QQ-plot of DAX data against estimated normél £ 0.00917) and hyperbolic distribu-
tion ({ = 2.16 ands = 0.101).

then the hyperbolic distribution tends to a Gaussian distribution with covariance matrix
C= g@A. Estimating hyperbolic parameters of two-dimensional, simulated normal data
resulted inf-estimates of 300-50@-estimates for any of the data lay between 2 and 5,
indicating that the data are far from normal.

We see that the VaR at level 5% is obtained quite well by both models. This may be
due to the fit of the covariance estimator, that is, the choice ©f0.94 andn = 74. The
VaR on lower levels is underestimated by the Gaussian model. To be able to judge the risk
of a portfolio one needs more than just the VaR on only one level, for example, a second
VaR, a category like heavy-tailed or flat-tailed or even the whole risk structure. Using the
VaR estimated on Gaussian random variables will result in a misrepresentation of the real
risk.

V. Conclusions

The symmetric hyperbolic distributions fit financial data better than the Gaussian distri-
bution. Calculating the VaR on the basis of symmetric hyperbolic random variables, one
gets more precise results for all levelsimultaneously. Using the normal distribution the
estimators may only be adapted to a single lepet(5% in the example) and yield biased
results elsewhere. This does not allow a sufficient representation of the portfolio risk
structure. The necessary calculations using hyperbolic distributions are nearly as easy anc
fast as in the Gaussian case.

Appendix: The Loglikelihood Function for ¢ and &
We present here the loglikelihood functiofior ¢ and é after having estimateg and A

from a set of data = (x)i_;. . We writew; = (X — w)A~(x — )" € R. In practice
we use the estimates; derived from the estimates andA. Another abbreviation is

Qu(X) = K, 1(/K(X).
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Estimated hyperbolic distribution

Kernel density estimation

o =
—_—0 o= o o=

Figure 2. Plot of the kernel density estimation, the estimated hyperbdlie .16 andd = 0.101)
and the estimated Gaussian density= 0.00696) for the US-Dollar data.

n d-1 —(1/
g
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I(x) £ —In [] (277)(1/2)d8dK1(§) o, (1/2)d-1
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n Kl—(l/2)d<§ 1+ 52)
=c—ndin¢—dInd—In (K, (O)0)) — D In

W2d-1 -
i=1 i
<§ 1+ 82>

The derivatives—necessary for the Newton method to obtain the ML-estimate—with
respect ta/ andd are:

(9)

al

=+ 0] + 3 Quaa {51+ ) 1 3
?g__” E+Ql(§) +§lQ(uz)d71§ 1+§ 1+82’

ol d 1
95 + E Q/2d- 1((\ 1+ 32)§wiwi(_283)

2 1+?

d " [Oh [Oh
:ng—i:ElQu/zmﬂ 4 1+82 { 1+§m,
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a2l

d 1
Frcn _n<§2+ Q4(9) + ZQl(g) - 1)

. i d—1 i
+2(1 + :;) Q(21/2)d 1 Q(:L/Z)d 1 52)_1 )
i=1
y1+

9l d : i |(36 + |)
W: —nNn §— igl (Q(l/z)dl( \/ g\/ (gz ((;3 + wS)(;)

2 o d—2 w;
| Quze-1| £41 + )T T o Quiza-1| {41 + 52 1

'Q(l/z)dl(é\/::;)zi) -1
and
82| " 5 Wi d—2 (Oh
asag: _2 Q(l/Z)d—l 4 1+§ _7w_Q(1/2)d—l 4 1+§ -1
=t L1+ 5

Wi w;j w;j ! wi{ Wi
4 1‘*‘? 1+§83+wi8:_2? Q(21/2>d1<§ 1‘*‘52)

i=1
d_2 Wi
_7Q(1/2)d 1| £ 1+§ -1}
{ 1+62

The ML-estimation routine was written in<+. With values {w;};_1  1000@s input it
takes roughly 3 minutes to perform the estimation on a Pentium 133.
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An Algorithm for Creating Random Variables from a Generalized Inverse
Gaussian Distribution with Parameters 82, and ¢

This algorithm is based on Atkinson (1982). To maximize the efficiency of the algorithm
one first needs to find two numbesg = 0 minimizing

fl dIEf 1 (eX[{Sl;) - 1) eXF(—S\{z + 251)

ands, € [—{%, 0] minimizing

1 o ————
f, & — exp (Sz> exp(=38\4% + 2s,).
S 4

The efficiency of the algorithm is reziprocal f¢ + f,. Due to Atkinson a numerical
approximation of the minima is sufficient for an acceptable performance. However in
most cases even constants lie= ¢%/2 ands, = —?/2 are acceptable.

begin
create independent random variableendv uniformly distributed on (0, 1)

fy
fl + fz

ifu=
then
1
x=g In (1 + us,(f; + f,) exp(8¢° + 2sy))
1

024 (2 + 2s)) %2
2X

+ 8\/[2 + 251

if In(v) = —

o

thenenc
elsegotobegin
fi

else

X = Si In (—sx(1 — u)(fy + ) exp(8\2 + 2s,))

02+ (2% + 2s,) X2
B 2x

if In(v) = + 8%+ 2s,

o

thenen

elsegotobegin
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Thenx is distributed according to the generalized inverse Gaussian distribution with
parameters 18 and % So if Y is ad-dimensional normal random vectqr,a location
vector andd the Cholesky decomposition df, then the random vectot = V/xY®" +
w is distributed according t&y(¢, 8, w, A).

The author would like to thank Prof. Dr. P. J. Huber, Dr. E. Tabakis, and two unknown referees for valuable
comments.
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