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Expectations Hypothesis of the Term Structure of
Implied Volatility: Re-examination

Abstract

Previous studies have tested the expectations hypothesis of the term structure of im-

plied volatility using fixed-interval time-series of at-the-money options. We show, using a

stochastic volatility option pricing model, that even the implied volatilities of at-the-money

options are not necessarily unbiased and that the fixed-interval time-series can produce

misleading results. We then suggest an alternative approach and test the expectations hy-

pothesis using S&P 500 stock index options. Our results do not support the expectations

hypothesis: long-term volatilities rise relative to short-term volatilities but the increases

are not matched as predicted by the expectations hypothesis. In addition, an increase in

the current long-term volatility relative to the current short-term volatility is followed by a

subsequent decline.



Expectations Hypothesis of the Term Structure of

Implied Volatility: Re-examination

A number of previous studies use the implied volatility in the Black-Scholes (BS, 1973)

formula as an estimate of the expected future volatility of the underlying asset over the life

of the option.1 Implied volatility at any moment in time varies with exercise price as well

as time to expiration. The pattern of implied volatility across time to expiration is known

as the term structure of implied volatility, and the pattern across strike prices is referred to

as the volatility smile (Dupire (1994), Derman and Kani(1994), and Rubinstein (1994)) or

the volatility sneer (Dumas, Fleming and Whaley (1998)).2

This paper pertains to the term structure of implied volatility, empirical results of which

are mixed at best despite its economic and practical importance.3 Poterba and Summers

(1986), one of early works on this issue, show that long-term volatilities do not move much

in response to shot term volatilities. Stein (1989) derives the relationship between implied

volatilities of at-the-money options and times to expiration, using the stochastic volatility

model of Hull and White (1987). More specifically, he tests the term structure relationship

of the implied volatilities using S&P 100 stock index options, assuming that instantaneous

volatility follows a continuous-time mean-reverting AR(1) process. Stein (1989) reports

significant evidence of overreaction in the term structure of the stock index options’ implied

volatilities, given the level of mean reversion in volatility, which is contradictory to the

results in Poterba and Summers (1986). The expectations hypothesis maintains that the
1Mayhew (1995) and Figlewski (1997) provide reviews on the various uses and misuses of implied volatility.
2Dumas, Fleming and Whaley (1998) show that the implied volatilities for S&P 500 index options prior to

the October 1987 market crash form a smile pattern, i.e., deep in-the-money and out-of-the-money options

have higher implied volatilities than at-the-money options, and after the crash, a sneer pattern appears, i.e.,

implied volatilities decrease monotonically as the option exercise prices increase relative to the current index

level.
3For example, volatility forecasting is central for derivatives trading. See also Duffie and Pan (1997) for

the importance of the term structure of implied volatility in measuring value-at-risk.
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movements in long-term volatility should be consistent with expected future short-term

volatilities. However, Stein (1989) shows that the implied volatility of long-term options

overreacts to changes in the implied volatility of short-term options, which is contrary to

the expectations hypothesis. Campa and Chang (1995) use the model developed by Hull

and White (1987) to test the expectations hypothesis. Using foreign currency options,

they do not find evidence of such overreaction of long-term volatilities, supporting the

expectations hypothesis. Heynen, Kemna and Vorst (1994) examine the overreaction of

implied volatilities and show that it varies with the model specification. More specifically,

using the European Option Exchange and Amsterdam Stock Exchange options, they show

that overreaction disappears if a different process (e.g., EGARCH (1,1) is assumed for the

stock return volatility. Further, Diz and Finucane (1993), conducting an alternative set of

tests, find no indication of overreaction for S&P 100 stock index options. In summary, the

empirical results on the expectations hypothesis of the term structure of implied volatility

of options are mixed at best, but with a strong favor of support.

There are several important issues that may contribute to the contradictory results of the

previous studies, e.g., misspecifications in the term structure of volatilities, asynchronous

transactions (Harvey and Whaley (1991)), difficulties in arbitraging an entire index, the

application of the BS European option model to American options (Harvey and Whaley

(1991, 1992a, 1992b)), and so on. One particular problem is that estimation errors induced

by inaccurate proxies of expected future volatilities may lead to confounded results. This

problem is related to the constant volatility assumption of the BS option pricing model.

Empirical evidence suggests that stochastic volatility option pricing models perform better

than the constant volatility BS model. For example, Bakshi, Cao and Chen (1997) report

that a stochastic volatility model typically reduces the BS pricing errors by 25 to 60 per-

cent. A recent study, Das and Sundaram (1999), examine two different volatility models

(jump-diffusion and stochastic volatility) to explain observed shapes of the term structure

of implied volatilities. Among others, they find that neither model is able to capture all

aspects of observed implied volatilities adequately, but that stochastic volatility model per-

forms much better than the other type in producing a great variety of patterns of the term
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structure of implied volatilities for at-the-money options.4

This paper reexamines the expectations hypothesis of the term structure of implied

volatility, and is distinguished from previous studies from several important perspectives.

First, all previous studies use at-the-money options under the assumption that implied

volatilities of at-the-money options are unbiased.5 We show that under the assumption of

stochastic volatility the implied volatility of even at-the-money options is not necessarily

unbiased. This result is consistent with the finding of Longstaff (1994), which is done

independently in a different framework. A matrix of implied volatilities across times to

expiration and strike prices provides valuable information. Using only one row of the matrix

corresponding to at-the-money options often ignores this additional information and can

induce systematic biases in the test of the term structure of implied volatility. Second,

we show that the common practice of using daily or weekly time series of options to test

the expectations hypothesis is faulty and thus can produce misleading results. Third, we

propose a new approach to test the expectations hypothesis and apply it to S&P 500 index

options.

A correctly specified test of the expectations hypothesis requires that each observation

in a series has the same time to expiration so that long-term volatility can be directly

compared to short-term volatility. In this paper, rather than using fixed-interval daily

or weekly data, we select observations for a given time to expiration to ensure that each

observation in a series has the same time to expiration as specified by the expectations

hypothesis. We find that long-term volatilities rise relative to short-term volatilities as

predicted by the expectations hypothesis, but the increases are not matched as predicted

by the expectations hypothesis. In addition, we find evidence that an increase in the current
4See also Melino and Turnbull (1990), Heynen, Kemna and Vost (1994) for further evidence. The issue is

still admittedly controversial. For instance, Harvey and Whaley (1992b) argue that although the BS constant

volatility assumption is violated in practice, the model’s predictions are empirically indistinguishable from

stochastic volatility option pricing models when the options are at-the-money and have short times to

expiration.
5Of course, there could be other advantages of using at-the-money options such as high liquidity compared

to in-the-money or out-of-the-money options.
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long-term volatility relative to the current short-term volatility is followed by a subsequent

decline. Also, to compare with previous studies, we conduct the tests of the expectations

hypothesis using the implied volatilities of at-the-money options only. We find that at-the-

money option implied volatilities adopted by previous studies produce much more favorable

results for the expectations hypothesis than the expected volatilities in this paper.

The rest of the paper is organized as follows: In Section I, we provide a brief literature

review and point out potential problems in previous studies, focusing on Stein(1989) and

Campa and Chang(1995) which are closely related to ours; in particular, problems of using

at-the-money options and fixed interval time series data in testing the expectations hypoth-

esis. In Section II, we propose a new approach for testing the expectations hypothesis of the

term structure of implied volatility. We then investigate empirically the hypothesis using

S&P 500 index options in Section III. Section IV contains concluding remarks.

I. Biases in Testing the Expectations Hypothesis

A. Bias induced by the use of at-the money option implied volatility

This section shows potential bias induced by the use of implied volatility of at-the-money

options, focusing on a previous study, Campa and Chang (CC hereafter, 1995). However,

the same problem is applied to all previous studies based on at-the-money options.

The BS option pricing model is based on the assumption that the underlying stock

price (S) follows a stochastic process with a constant variance (V̄ ). Hull and White (HW,

1987) derive an option pricing formula under the assumption that the underlying asset price

process is generated by a stochastic volatility model with uncorrelated risks. Let C(V̄ ) be

the BS formula for a European call option, then the HW option pricing formula (f) is

related to the BS formula as follows:

f(St, σ2
t ) =

∫
C(V̄ )h(V̄ | σ2

t )dV̄ = E[C(V̄ )] (1)

where h is the conditional density function given the instantaneous volatility, σ2
t . The mean

variance, V̄ , is defined as

V̄ =
1

T − t

∫ T

t
σ2
t dt, (2)
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where T is the expiration date. The HW model suggests that once the conditional dis-

tribution of stochastic volatility is specified, the HW formula is obtained by taking the

expectation of the BS formula with respect to volatility. Unfortunately, no analytic form of

the conditional density function for stochastic volatility is known.6

As shown in the next section, C(V̄ ) is a concave function of V̄ for at-the-money options.

Therefore, from Jensen’s inequality we have E[C(V̄ )] ≤ C(E[V̄ ]). This implies that there

exists 0 ≤ θt ≤ 1 such that

E[C(V̄ )] = θtC(E[V̄ ]). (3)

Further, for at-the-money options, θt is a decreasing function of the time to maturity of

the option. This implies that the bias in the implied volatility of at-the-money options will

vary with times to maturity.

Assuming that the BS formula is linear in volatility for at-the-money options, CC (1995)

derive the following approximate relationship:

C(Vi,j) = Ei[C(V̄i,j)] = (θj−i)C(Ei[V̄i,j ]) = C(θ2
j−iEi[V̄i,j ]) (4)

where Vi,j (j > i) is the implied variance at time i of an at-the- money option with expiration

date j, and Ei is the expectation operator taken at time i. Therefore, equation (4) implies:

Ei[V̄i,j ] = Vi,j/θ
2
j−i, (5)

which suggests that, under the assumption of a stochastic volatility, the implied variance

of at-the-money option is less than the expected variance.

For two equal-time periods 1 and 2, using equations (2) and (5), and the law of iterated

expectations, E0[V̄i,j ] = Ei[V̄i,j ] + ui, CC (1995) obtain:

V1,2 = 2(θ1/θ2)2V0,2 − V0,1 + ε1 (6)

where ε1 = θ2
1u1.

6With different sets of assumptions regarding the stochastic process of the volatility and the price of

volatility risk, Amin and Ng (1993) and Heston (1993) derive different solutions.
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Assuming θ1/θ2 = 1, they then generalize equation (6) for an arbitrary number of

periods, k (see equation (8) in CC (1995)) as

k−1∑
i=0

E0[V̄i,1+i] = kE0[V̄0,k] or
k−1∑
i=0

Ei[V̄i,1+i] = k(1/θk)2V0,k +
k−1∑
i=1

ui. (7)

Then, the expectations hypothesis implies:

k−1∑
i=0

Vi,1+i = k(θ1/θk)2V0,k +
k−1∑
i=1

εi. (8)

Using a long-short term variance spread, equation (8) can be rewritten as:7

(1/k)
k−1∑
i=0

Vi,1+i − V0,1 = (θ1/θk)2V0,k − V0,1 + (1/k)
k−1∑
i=1

εi. (9)

A testable implication of the expectations hypothesis can be written then as:

(1/k)
k−1∑
i=1

{Vi,1+i − V0,1} = α0 + β0{(θ1/θk)2V0,k − V0,1}+ ε. (10)

¿From equation (10), we can see that the implicit assumption in CC (1995) is not

θ1/θ2 = 1, but θ1/θk = 1 for all k, which is a necessary condition for justifying the use

of implied volatility of at-the-money options. CC (1995) justify their results in support

of the expectations hypothesis by arguing that the direction of the bias in β0 depends on

the covariance between (V0,k − V0,1) and V0,k. By decomposing the independent variable in

equation (10) into (V0,k − V0,1) and {(θ1/θk)2 − 1}V0,k, they postulate that the bias in the

estimated slope is similar to the case of an omitted variable, where {(θ1/θk)2−1}V0,k is the

omitted variable (see equation (9) in CC (1995)). Empirically, they find that the sample

covariance between (V0,k − V0,1) and V0,k is negative for all maturity pairs of options in

their sample. CC (1995) claim that by assuming θ1/θ2 = 1, they underestimate the true β0

and their results are conservative, and thus, relaxing the assumption will strengthen their

results in support of the expectations hypothesis.

Contrary to their argument, the effect of the assumption, θ1/θk = 1, on the parameter

estimates in Campa and Chang (1995) may not be negligible. The assumption of θ1/θk =
7Since the level of volatility is characterized by an AR(1) process, following Campa and Chang (1995),

we subtract V0,1 from both sides of equation (8).
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1 may induce a sign change on the estimated slope in equation (10), depending on the

magnitude of (θ1/θk)2. The negative covariance between (V0,k − V01) and V0,k implies

∂(V0,k − V0,1)
∂V0,k

< 0, or
∂V0,1

∂V0,k
> 1 for all k.

By assuming θ1/θk = 1, we can rewrite equation (10) as:

[(1/k)
k−1∑
i=1

{Vi,1+i − V0,1} = α∗0 + β∗0(V0,k − V0,1) + ε. (11)

Taking partial derivatives of equations (10) and (11) with respect to V0,k and equating the

resulting right hand side expressions give

β0

{
(θ1/θk)2 − ∂V0,1

∂V0,k

}
= β∗0

{
1− ∂V0,1

∂V0,k

}
. (12)

By rearranging, we obtain the following relation:

β∗0
β0

= 1− (θ1/θk)2 − 1
∂V0,1

∂V0,k
− 1

. (13)

Note that θ1/θk > 1. Therefore, if (θ1/θk)2 <
∂V0,1

∂V0,k
, β∗0 < β0. But if (θ1/θk)2 >

∂V0,1

∂V0,k
,

β∗0 has an incorrect sign. In addition, the misspecification induced by the use of implied

volatility of at-the-money options does not guarantee consistent estimates of the variance,

which may lead to inaccurate test statistics. Accordingly, the conclusions of the Wald test

in CC (1995) are highly suspect.

B. Biase induced by the use of fixed-interval times series

Stein (1989) assumes that instantaneous volatility, σt, evolves according to an Ornstein-

Uhlenbeck process:8

σt = α(µ− σt)dt+ γσtdzt (14)

where α, µ, γ are unknown positive parameters. As shown in Renault and Touzi (1996), by

integrating the stochastic differential equation (14), we obtain

σt = ρ4tσt−1 + µ[1− ρ4t] + γ

∫ t

t−1
ρ4tdzs, (15)

8This stochastic process of volatility is also considered in Heyen, Kemna and Vost (1994), Diz and

Finucane (1993), and Renault and Touzi (1996).
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where ρ = e−α and 4t is the time interval between t − 1 and t. Therefore, σt can be

expressed as an AR(1) process:

σt = aσt−1 + b+ εt, εt ∼ iidN(0, w2), (16)

where

a = ρ4t;

b = µ(1− ρ4t); and

w2 = γ2 1− ρ24t

2α
.

Then, the expected volatility at time t of the stock return with time remaining until

expiration T can be shown as

Et[σt,t+T ] = µ+
1− ρT

αT
(σt − µ). (17)

The hypothesis test in Stein (1989) is based on the following relationship:

Et[σt,t+T ]− µ =
T (1− ρK)
K(1− ρT )

(Et[σt,t+K ]− µ), (18)

where K is longer time to expiration than T .

Using implied volatilities of at-the-money options for expected volatilities, Stein (1989)

rejects the expectations hypothesis. He first estimates ρ using a short-term volatility time

series. The estimate of the instantaneous autocorrelation coefficient, ρ, gives the “theoretical

value” of the slope in equation (18). This value is then compared with the estimated slope of

the regression of a longer-term volatility series on a shorter-term volatility series. Therefore,

the conclusion in Stein (1989) depends upon the estimate of ρ, which is subject to the

potential bias induced by using implied volatility of at-the-money options.

Stein (1989) uses a weekly short-term (less than a month to expiration) volatility series

to estimate the autocorrelation coefficient. Such a practice, however, ignores term structure

effects and thus is misleading because the remaining time to expiration varies from week to

week.

9



With a fixed time interval 4t between t and t+ 1, we obtain the following relationship

for the given expiration date:9

Et[σt+1,t+T ]− µ =
T (ρ4t − ρT )

(T −4t)(1− ρT )
(Et[σt,t+T ]− µ). (19)

Equation (19) suggests that the coefficient, ρ, changes in response to changes in time as

the options approach expiration. It is clear that the autocorrelation, ρ4t, will be properly

estimated only when the time-to-maturity remains constant over time.

CC (1995) is subject to the same problem. In either Stein (1989) or CC (1995), the

relationship specified as a testable form of the expectations hypothesis does not hold as

the time changes. For example, if equation (10) holds between three-month (90 days) and

six-month (180 days) variances today (k = 2), on the next day the relation will be between

89-day and 179-day variances and two months later the relationship will be between one-

month and four-month variances (k = 4). If the short-term and long-term options have

three months and six months to expiration today, respectively, we need another three-month

option three months later to test the expectations hypothesis as specified in equation (10).

We can observe this relationship every three months; that is, the time interval should be

equal to the time to expiration of the shorter-term option.

II. Unbiased Expectation and the Expectations Hypothesis

The degree of curvature of the BS call price with respect to the implied variance can be

determined by looking at the second derivative of C as:

C ′′(V̄ ) =
S
√
T

4V̄ 3/2
n(d1)(d1d2 − 1) (20)

where

d1 =
log (S0/X) + (r + V̄ /2)T√

V̄ T
, d2 = d1 −

√
V̄ T ,

9From equation (17), we have

Et[σt+1,t+T ]− µ =
(1− ρT−4t)
α(T −4t) (Et[σt+1]− µ).

We also have Et[σt+1] = µ + ρ4t(σt − µ) by equation (16). Substituting this into equation (18) and using

equation (17) results in equation (19).
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X = exercise price, r = risk-free interest rate less dividend yield, T = time to maturity, and

n(·) = standard normal density function. The curvature of C is determined by the sign of

d1d2 − 1. The point of inflection in C is then obtained by solving d1d2 = 1 for V̄ ; that is,

V̄ = I ≡ 2
T
{
√

1 + [log (S0/X) + rT ]2 − 1}. (21)

Thus, C is a convex function of V̄ for sufficiently large or small X; that is, I − V̄ > 0,

which implies that the BS formula underprices deep in-the-money or out-of-the-money op-

tions. For at-the-money options (S = X), however, I = 0 and C is always a concave function

of V̄ and the BS formula overprices them.10 Also, for at-the-money options, C ′′(V̄ ) is a

decreasing function of T , other things being constant, that is, the magnitude of overpricing

becomes larger as the time to expiration increases. This suggests that θt, introduced in

section I, is a decreasing function of the time to maturity and that the volatility implied by

the BS formula even for at-the-money options is biased.

The inflection point occurs at slightly in-the-money or out-of-the-money options for

which V̄ = I. In principle, one can take the implied volatility as an unbiased expectation

if an option exists for which the implied variance (V ) is exactly equal to I. If there is no

option for which V = I, then one can take the option with smallest |I − V | among existing

options and use the following approximation:

E[V̄ ] =
f − C(I)
C ′(I)

+ I ≡ V e, (22)

which is derived from the Taylor series expansion of E[C(V̄ )] around I, that is,

f = E[C(V̄ )] = C(I) + C ′(I)(E[V̄ ]− I), (23)

where C ′(I) is the first derivative of C(V̄ ) evaluated at I, where11

C ′(V̄ ) = Xe−rTn(d2)
√
T

2
√
V̄
.

10It is possible that C is convex for very long-term options. But typical options have maturity less than

a year and hence the BS formula is concave for most options.
11Note that C′′(I) = 0 by definition.
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Using the expected variance obtained from equation (22), we can specify the relationship

in equation (10) as follows:

(1/k)
k−1∑
i=1

(V e
i,1+i − V e

0,1) = α0 + β0(V e
0,k − V e

0,1) + ε. (24)

Equation (7) can also be used to derive an implication of the expectations hypothesis

regarding the predicted change in the long-term variance over a short-term period. Rewrit-

ing equation (7) for the long-term variance of an option with time to expiration (k − 1) at

i = 1, we get

(k − 1)E1[V̄1,k] =
k−1∑
i=1

E1[V̄i,1+i]. (25)

By taking the difference between equation (25) and equation (7), we obtain the one-

period change in the long-term variance as follows:

V e
1,k − V e

0,k = α1 + β1
1

k − 1
(V e

0,k − V e
0,1) + ε. (26)

If the expectations hypothesis holds, the changes in the long-term variance should reflect

the term structure spread. Thus, the expectations hypothesis implies that the estimated

slope coefficient of β1 is equal to one.

III. Empirical Results

A. Data

In this study, we use the S&P 500 index options traded on the Chicago Board of Options

Exchange (CBOE).12 We have chosen the S&P 500 index options partly because they are

one of the most actively traded options exhibiting a large range of exercise prices, which
12We performed the same set of tests for the Philadelphia Stock Exchange (PHLX) currency options of

British Pound, Canadian Dollar, and Deutsche Mark from 1988 to 1997. Due to thin trading in European

currency options, especially for long-term options, we were able to test only for the short-term options up

to four months of maturity. The results are qualitatively similar to those reported in Table II and will be

available from the authors upon request.
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facilitate our comparison of implied volatilities over different exercise prices. Also, they are

European options for which the BS model is developed.13

We use the average of daily closing bid and ask prices from January 1989 to March

1999. The expiration date is set as the first business day after the third Friday of the

contract month, and the last trading day occurs on the business day (usually a Thursday)

preceding the third Friday when the exercise-settlement value is calculated. Currently, the

exercise-settlement value is calculated using the opening reported sales price of each com-

ponent stock of the index on the last business day (usually Friday) before the expiration

date.14 The index prices, dividend yields, and interest rates are obtained from Datastream.

Datastream provides various daily interest rates of different maturities including overnight,

one-week, one-month, three-month, six-month, and one-year. We use linear interpolation

to calculate the intermediate interest rates. We adjust for dividend payments by subtract-

ing annualized dividend yields from interest rates when we calculate implied volatility and

estimate the expected volatiltiy.

B. Time to Expiration and Exercise Price Effects of Implied Volatility

Figure 1 displays the implied variances of the call options in the sample. The time

to maturity ranges from 2 weeks to 40 weeks and the spot to strike price ratio, S/X, from

.72 to 1.25. Clearly, for the options with a time to maturity less than 4 weeks, the im-

plied variances show a smile pattern, i.e., the implied variances tend to be greater for deep

in-the-money and out-of-the-money options than for at-the-money options. However, for

long-term maturity options, the implied variances seem to follow a sneer pattern found in

Dumas, Fleming and Whaley (1998)—that is, the implied variances tend to decrease mono-

tonically as the strike price rises relative to the spot index.
13Also, the S&P 500 stock index options do not contain the “wildcard” feature of the S&P 100 stock index

options that seriously complicates the valuation procedure.
14Before August 24, 1992, the exercise-settlement value was calculated using the closing price of Thursday

rather than the opening price of Friday. Dumas, Fleming and Whaley (1998) provides a historical background

of the S&P 500 index options.

13



********************************

Please insert Figure 1 about here.

********************************

To see the convexity of the option prices with respect to the ratio, S/X, we plot the devi-

ations of implied variances from the inflection point, I−V , for different times to maturity in

Figure 2. All of the plots are parabolic curves. I−V tends to be negative (i.e., C is concave)

for at-the-money options regardless of their time to maturity. On the other hand, I − V is

always positive (i.e., C is convex) for deep in-the-money or out-of-the-money options. Note

that negative I − V implies that C is concave and hence, by Jensen’s inequality

E[C(V̄ )] = C(V ) ≤ C(E[V̄ ]).

Since C is an increasing function of V , it follows that V ≤ E[V̄ ]. Therefore, implied

volatility for at-the-money options is lower than expected volatility. Similarly, the opposite

can be shown for deep in-the-money or out-of-the-money options. Thus, the plots in Figure

2 confirm the simulation results in HW that for at-the-money options, implied volatilities

are lower than expected volatilities, and that for deep in-the-money and out-of-the-money

options, implied volatilities are higher than expected volatilities. Note also that, as the

time to expiration increases, the crossing-points (where the implied variance is equal to the

expected variance (I − V = 0)) tend to deviate more from the line of symmetry; that is,

the parabola becomes wider. This suggests that the BS option price will approximate a

linear function of volatility for deep in-the-money or out-of-the-money options as the time

to maturity increases.

********************************

Please insert Figure 2 about here.

********************************

Also, in order to see how implied volatility behaves for different times to maturity, we

plot the deviation of implied variance from the inflection point against the time to maturity.

Figure 3 presents the results. The deviations for at-the-money options tend to be negative

and decrease as the time to expiration increases. For in-the-money options and out-of-the-
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money options, the deviations are dispersed widely for very short-term maturities, close to

zero for mid-term maturities and tend to decrease as the time to maturity increases.

********************************

Please insert Figure 3 about here.

******************************** .

Figure 4 depicts the deviation of the implied variance from the inflection point across

the ratio of the underlying stock index price to the option’s strike price and the time to

maturity. Note that the inflection point as defined in equation (21) depends upon not only

the spot to strike price ratio and the time to maturity but also the interest rate and divi-

dend yield. After different interest rates and dividend yields are accounted for through the

inflection point, the figure becomes much smoother than that in Figure 1. The deviation of

implied variance from the inflection point is greater for in-the-money and out-of-the money

options than at-the-money options. However, the difference does not appear to be signifi-

cant for long-term maturity options.

********************************

Please insert Figure 4 about here.

********************************

Table I provides details of the average deviations of BS implied volatility (V ) from the

inflection point (I) for varying ratios of S/X and different times to expiration. The average

deviations tend to be bell-shaped over S/X; they are smaller for at-the-money options or

near at-the-money options and greater for deep in-the-money and out-of-the-money options.

This table confirms that the deviations tend to decrease for at-the-money options as the

time to expiration increases. For in-the-money and out-of-the-e money options, the devia-

tions are positive for short-term maturities, but become negative as the time to maturity

increases. For a given maturity, the inflection point (i.e., I − V = 0) occurs at slightly

in-the-money and out-of-the-money options.

In section I, we have shown that the use of implied volatility of at-the-money options

can produce misleading results in testing the expectations hypothesis. The results in Table
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I are support our argument, suggesting that the implied volatility of even at-the-money

options can be more biased than that of in-the-money or out-of-the-money options for

some maturity options. However, the overall effect of the biases induced by the use of

implied volatility of at-the-money options in testing the expectations hypothesis cannot be

predicted and is open for an empirical investigation, which is the subject in the next section.

******************************

Please insert Table I about here.

******************************

C. Tests of the Expectations Hypothesis

To eliminate the varying time to expiration effect, we choose observations with a fixed

time to expiration rather than using daily or weekly data for the same expiration dates. As

a result, each observation in a series of the sample has the same time to expiration, and the

time interval between observations is the time to expiration of the short-term option. For

example, when we consider the relationship of volatilities between 3 months and 1 month,

we choose 89 to 92 days for 3 months and 29 to 32 days for 1 month.15 Thus, we have several

overlapping observations during the same time period, which requires a special correction

for the standard errors. To correct for a moving average error term and for conditional

heteroskedasticity resulting from the overlapping time series, we report Newey-West (1987)

standard errors. However, even with Newey-West standard errors, an asymptotic approxi-

mation is not available for the overlapping samples. Accordingly, we estimate the standard

errors of the regression coefficients by using the Efron (1979) bootstrapping method based

on 1,000 runs.16

15If we denote mi as the number of days for ith month, the possible combinations for (m1,m2,m3) are

(30, 30, 30), (31,30,31), (28,32,30), and so on. Similar rules are used for other pairs of long- and short-term

maturity options. This results in several consecutive daily observations for certain months.
16In this procedure, each simulation run preserves the original structure of the variable series and draws

a random sample of errors from the original regression with replacement, creating new averages of future
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********************************************

Please insert Table II about here.

********************************************

The estimation results for equations (24) and (26) are reported in Table II. We choose

implied variance with the smallest value of |I − V | and adjust it using equation (22). To

compare with previous studies, we also report the estimation results using at-the-money

options’ implied variances.

When we use the expected variance as in equation (22), the expectations hypothesis is

not supported. We reject the null hypothesis of β = 1 for all cases. Most of α values are

close to zero. In Panel A, the estimates of β are significantly positive but not close to one as

they should be under the expectations hypothesis, suggesting that the long-term variances

rise relative to the short-term variances, but the increases are not perfectly matched as

predicted by the expectations hypothesis.

However, when we use the implied variances of at-the-money options like previous stud-

ies, the results are completely different. The coefficient estimates are much larger than those

obtained by the approximated expected variances. Based on the results, we cannot reject

the null hypothesis of α = 0 and β = 1 for three out of five cases. In Figure 3 and Table I,

the implied variances of at-the-money options are significantly different from the inflection

point especially for short-term maturity options. Using the implied variances of one-month

at-the-money options appears to give overestimates of the slope coefficients in equation

(24) due to the strike price bias and time-to-expiration bias of the implied variances of

at-the-money options.

In Panel B, the slope coefficient estimates of equation (26), using the expected variances,

are shown to be negative. The negative signs of the estimates suggest that the long-short

term variance spread predicts the wrong direction in the subsequent change of the long-

term volatility. In other words, a rise in the current long-term volatility relative to the

short-term volatilities. We then estimate β and store the results. The whole operation is then repeated for

1,000 bootstrap samples, at the end of which we have 1,000 estimates of β. These estimates are then used

to estimate the asymptotic standard error of β.
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current short-term volatility is followed by a subsequent decline, rather than a rise in the

long-term volatility in the next period. When we estimate the coefficients using the implied

variances, we have similar results but the coefficient estimates tend to be greater than those

obtained with expected variances. The bootstrap standard errors are similar to the reported

Newey-West standard errors.

In summary, our results do not support the expectations hypothesis. Instead, we have

found puzzling behavior in the volatility term structure. The movement of average future

short-term volatilities is in the direction predicted by the expectations hypothesis, but not

the short-run movement of long-term volatilities.17

IV. Conclusion

Previous studies have tested the expectations hypothesis of the term structure of im-

plied volatility using fixed-interval time-series of at-the-money options. We show, using

a stochastic volatility option pricing model, that the implied volatilities of at-the-money

options are not necessarily unbiased and that the fixed interval time-series can produce

misleading results. We then propose a new approach to test the expectations hypothesis

and apply it empirically to S&P 500 index options. Rather than simply taking implied

volatilities of at-the-money options, we derive a measure of expected variances from a range
17This parallels the same puzzling phenomenon in the interest rate term structure literature (e.g., Froot

(1989) and Hardouvelis (1994)), and certainly deserves further study. Two primary explanations to the puzzle

have been proposed. Campbell and Shiller (1991) argue that movements in current long-term rates obey the

general direction predicted by the expectations hypothesis, but those movements are sluggish relative to the

movements of the current short rates, i.e., long-term rates underreact relative to current short-term rates

or overreact relative to future short-term rates. The second explanation assumes that market expectations

are rational but that the information in the spread is composite information reflecting both expected future

rates and the variation of risk premia. Froot (1989), using U.S. survey data on short-term and long-term

interest rates, finds that the negative correlation between changes in long-term rates and the previous long-

short spread is not due to a time-varying risk premium, but due to a violation of the rational expectations

assumption, namely, an overreaction to the spread. We may apply an analogous argument to the case of the

volatility term structure results found in this study.
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of option contracts with different strike prices based on the functional relationship between

the HW stochastic volatility model and the BS model. To eliminate varying time to ma-

turity effects, we select observations for a given time to expiration in such a way that each

observation in a series has the same time to expiration as specified by the expectations

hypothesis.

Our results do not support the expectations hypothesis. Even though the movement

of average future short-term volatilities follows the direction predicted by the expectations

hypothesis, the short-run movement of long-term volatilities does not: long-term volatilities

rise relative to short-term volatilities but the increases are not matched as predicted by the

expectations hypothesis. In addition, an increase in the current long-term volatility relative

to the current short-term volatility is followed by a subsequent decline. The results also

suggest that the specifications based on at-the-money options’ implied volatilities adopted

by previous studies produce much more favorable results for the expectations hypothesis

than those based on our expected future volatility measure.

19



References

Amin, Kaushik I. and Victor K. Ng, 1993, Option valuation with systematic stochastic

volatility, Journal of Finance 48, 881–910.

Bakshi, Gurdip, Charles Coa, and Zhiwu Chen, 1997, Empirical performance of alternative

option pricing models, Journal of Finance 52, 2003–2050.

Black, Fischer and Myron Scholes, 1973, The pricing of options and corporate liabilities,

Journal of Political Economy 81, 637–59.
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Table I
Average Deviations (I − V ) of BS Implied Variance (V ) from Inflection point

(I) for Varying Values of S/X and Time to Maturity (T )

S represents the stock price and X represents the exercise price. Each number in the first column
represents a mid point of .01 interval: e.g., the values of S/X over (.905, .914) is taken as .91, over
(.925, .934) as .93, and so on. Numbers in brackets are medians and numbers in parentheses are
standard errors.

T (Weeks)
S/X 2 4 8 12 16 20 24 30
0.85 .5548 .2756 .1308 .0759 .0456 .0336 .0235 .0044

[.5488] [.2745] [.1325] [.0758] [.0429] [.0408] [.0373] [.0007]
(.0482) (.0199) (.0158) (.0165) (.0148) (.0182) (.0256) (.0200)

0.90 .2193 .1058 .0421 .0200 .0187 .0030 –.0079 –.0192
[.2184] [.1047] [.0464] [.0274] [.0163] [.0089] [.0056] [–.0200]
(.0109) (.0125) (.0123) (.0126) (.0138) (.0188) (.0158) (.0149)

0.95 .0404 .0201 –.0700 –.0137 –.0164 –.0178 –.0216 –.0289
[.0440] [.0145] [–.0004] [–.0056] [–.0097] [–.0106] [–.0210] [–.0239]
(.0124) (.0158) (.0147) (.0158) (.0169) (.0167) (.0130) (.0126)

0.97 –.0013 –.0136 –.0199 –.0224 –.0262 –.0251 –.0263 –.0338
[.0026] [–.0084] [–.0130] [–.0193] [–.0218] [–.0258] [–.0287] [–.0324]
(.0069) (.0063) (.0324) (.0086) (.0084) (.0086) (.0081) (.0087)

1.00 .0029 –.0147 –.0240 –.0259 –.0267 –.0305 –.0345 –.0351
[–.0089] [–.0137] [–.0180] [–.0184] [–.0204] [–.0231] [–.0260] [–.0289]
(.0099) (.0098) (.0095) (.0088) (.0086) (.0066) (.0089) (.0105)

1.05 .0031 –.0159 –.0256 –.0271 –.0259 –.0275 –.0273 –.0367
[.0053] [–.0073] [–.0152] [–.0161] [–.0201] [–.0208] [–.0227] [–.0272]
(.0134) (.0092) (.0078) (.0082) (.0120) (.0091) (.0049) (.0078)

1.10 .1278 .0483 –.0001 –.0135 –.0197 –.0444 –.0393 –.0351
[.1329] [.0571] [.0101] [–.0122] [–.0182] [–.0408] [–.0374] [–.0324]
(.0118) (.0069) (.0084) (.0099) (.0087) (.0093) (.0107) (.0114)

1.15 .2862 .1349 .0490 .01862 .0026 –.0146 –.0138 –.0267
[.3052] [.1457] [.0607] [.0227] [.0075] [–.0086] [–.0090] [–.0170]
(.0179) (.0205) (.0108) (.0103) (.0095) (.0106) (.0063) (.0131)

1.25 .8611 .4005 .1312 .0936 .0559 .0391 .0151 –.0107
[.8753] [.4029] [.1196] [.1183] [.0735] [.0463] [.0373] [–.0252]
(.0419) (.0137) (.0287) (.0179) (.0126) (.0134) (.0231) (.0260)



Table II
Tests of the Expectations Hypothesis

The column under Implied Variance represents estimation results using implied variances for at-the-
money options and the column under Expected Variance represents the results using V e ≡ f−C(I)

C′(I) +I,
where f is the option price, C(·) is the BS formula, and I is the inflection point. Equation (24)
is (1/k)

∑k−1
i=1 (V ei,1+i − V e0,1) = α0 + β0(V e0,k − V e0,1) + ε, and equation (26) is V e1,k − V e0,k = α1 +

β1
1

k−1 (V e0,k − V e0,1) + ε. Numbers in parentheses are Newey-West standard errors and numbers in
brackets are asymptotic standard errors based on Monte Carlo bootstrap simulations of 1,000 runs.
n indicates the number of observations in each long-short maturity series.

Panel A. Equation (24)
Long-Short n Implied Variance Expected Variance

α0 β0 α0 β0

2 months-1 month 127 .0001 .7348 .0003 .3954∗

(.0003) (.1393) (.0013) (.0728)
[.0003] [.1342] [.0013] [.0728]

3 months-1 month 92 .0014 .8092 .0010 .3803∗

(.0014) (.1143) (.0015) (.0408)
[.0014] [.1149] [.0015] [.0416]

4 months-1 month 91 .0020 .7802 .0024 .3127∗

(.0017) (.1506) (.0017) (.0554)
[.0016] [.1519] [.0017] [.0550]

6 months-2 months 47 .0033 .3465∗ .0041 .3652∗

(.0012) (.0723) (.0012) (.0656)
[.0012] [.0699] [.0012] [.0665]

8 months-2 months 27 .0089 .3694∗ .0087 .2881∗

(.0023) (.0905) (.0024) (.0708)
[.0023] [.0907] [.0023] [.0700]

Panel B. Equation (26)
α1 β1 α1 β1

3 months-1 month 100 –.0017 –.9075∗ –.0007 –1.0425∗

(.0024) (.2397) (.0025) (.1435)
[.0025] [.2398] [.0024] [.1429]

4 months-1 month 109 .0036 –.9598∗ .0041 –1.0055∗

(.0020) (.2963) (.0019) (.1761)
[.0020] [.2876] [.0019] [.1740]

6 months-2 months 58 .0024 –.8602∗ .0015 –.8729∗

(.0024) (.2551) (.0025) (.1544)
[.0025] [.2561] [.0025] [.1655]

8 months-2 months 76 –.0010 –.8054∗ –.0001 –.8599∗

(.0018) (.3172) (.0019) (.2179)
[.0019] [.3313] [.0019] [.2177]

∗ indicates rejection of the null hypothesis (α = 0 and β = 1) at 5% significance level based on Wald
test.
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Figure 3. Plots of Deviations of Implied Variance from 

                Inflection Point against Time to Maturity

B. At-the-money Call Options

C. In-the-money Call Options

A. In-the-money Call Options
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