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Abstract

This paper investigates nonlinear features of FX volatility dynam-

ics using estimates of daily volatility based on the sum of intraday

squared returns. Measurement errors associated with using realized

volatility to measure ex post latent volatility imply that standard time

series models of the conditional variance become variants of an AR-

MAX model. We explore nonlinear departures from these linear spec-

i�cations using a doubly stochastic process under duration-dependent

mixing. This process can capture large abrupt changes in the level

of volatility, time-varying persistence, and time-varying variance of

volatility. The results have implications for forecast precision, hedg-

ing, and pricing of derivatives.
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1 Introduction

Volatility is a prevailing feature of �nancial markets. Its presence implies
both risks and opportunities. Although asset returns are often represented
as a martingale di�erence series, volatility displays persistence and should
therefore be predictable. However, the data generating process (DGP) for
volatility is unobservable. Therefore most studies have used a fully speci�ed
conditional mean and conditional variance model to estimate and analyze
that latent volatility. What has been learned from past studies is dependent
upon the maintained statistical model and estimation procedures.

An alternative would be to use an observable proxy for latent volatility.
A standard proxy for ex post daily volatility has been daily squared returns
or squared residuals from a regression model for returns. However, these
measures of volatility can be very noisy.1 This issue has been analyzed by
Andersen and Bollerslev (1998) who evaluate GARCH(1,1) forecasts of latent
volatility using the sum of high-frequency squared returns as a proxy for ex
post daily volatility. Based on a simulation of integrated volatility implied
by the GARCH(1,1) di�usion limit, they �nd that the sum of high-frequency
squared returns is a less noisy measure of latent volatility than is squared
daily returns. This superior proxy for ex post volatility facilitates a more
accurate assessment of the GARCH forecasts.

A theoretical motivation for using the sum of high-frequency squared re-
turns to compute measures of volatility at lower frequencies dates is provided
by Merton (1980). 2 Andersen, Bollerslev, Diebold, and Labys (1999) extend
the theoretical justi�cation for this measure to the class of semimartingales
and, using a ten-year sample of �ve-minute returns for exchange rates, pro-
vide stylized facts associated with the distributions of volatility and corre-
lation at daily (and lower) frequencies. They refer to the sum of intraday
squared returns as realized volatility.

Rather than using realized volatility to gauge the potential performance
of GARCH forecasts (Andersen and Bollerslev (1998)) or characterizing dis-
tributions of ex post volatility (Andersen, Bollerslev, Diebold, and Labys
(1999)), our paper uses this nonparametric measure to analyze the time se-
ries behavior of FX volatility. Following the earlier literature, we use the
sum of intraday squared returns (realized volatility) as an observable proxy
for daily ex post volatility. However, we explicitly incorporate the fact that,
for practical sampling frequencies, realized volatility will not be an error-
free measure of ex post latent volatility. Although very few assumptions are
necessary to ensure that the measurement error is an innovation process, a

1An alternative proxy for daily ex post volatility that is eÆcient and easy to calculate
is the price range over a day. This has been used by Hsieh (1993) and Alizadeh, Brandt,
and Diebold (1999) among others.

2Examples of this practice include Poterba and Summers (1986), French, Schwert, and
Stambaugh (1987), Schwert (1989), Schwert (1990) , Schwert and Seguin (1990), Hsieh
(1991), and Taylor and Xu (1997).
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model of latent volatility is required to fully characterize the distribution of
that error. Specifying a functional relationship between our direct estimate
of volatility and the latent DGP for daily volatility, allows the latter to be
parameterized in terms of realized volatility, other variables in the informa-
tion set, and an error term. In this framework, standard latent volatility
models become variants of an ARMAX time series model.

In addition to proposing a structure that links time-series models of
volatility to their functional form in term of realized volatility, this paper
tests for nonlinear departures from the linear (in parameters) ARMAX rep-
resentation of realized volatility. To do this we introduce a new model that
permits regime switching within an ARMAX model, and does not require
simulation methods for estimation. In particular, our semi-Markov ARMAX
alternative allows for regime switching in the conditional mean and in the
conditional variance of realized volatility. The transition probabilities gov-
erning the discrete unobserved state variables and the conditional mean of
volatility are both functions of the duration of the state. This framework
allows us to investigate the importance of time-varying parameters and time-
varying persistence, in contrast to standard volatility models. In addition to
capturing large abrupt changes in the level of realized volatility, our structure
models time-variation in the conditional variance of volatility.

The importance of nonlinear e�ects in volatility are gauged by in-sample
statistical tests and by out-of-sample forecasts. These analyses show the
semi-Markov model to be a good description of FX volatility dynamics. In
particular, we �nd strong statistical evidence of regime changes in both the
conditional mean and conditional variance of realized volatility. With respect
to shifts in the mean, our results support the usefulness of recent research
exploring the combination of volatility clustering models with nonlinearities
such as structural changes or regime switching dynamics.3 For example, in
keeping with the results of Lamoureux and Lastrapes (1990) and Kim and
Kon (1999), capturing shifts in the mean of volatility lowers estimates of
the persistence of shocks to volatility. However, in addition, we also �nd
evidence of regime switches in the conditional variance of FX volatility. This
new result highlights the issue of time-variation in the volatility of volatility
which is important for vega hedging and for pricing derivatives.

Switches between states in our model are associated with discrete changes
in realized volatility. One of the states captures periods of high volatility in
FX rates. Switches from the normal state to that state are characterized by
an abrupt increase in the level of realized volatility combined with a large
increase in the variance of realized volatility. The estimates indicate that this
state is not initially persistent unless the high levels of volatility continue for

3These approaches include: Markov-switching volatility models such as Turner, Startz,
and Nelson (1989), Pagan and Schwert (1990); threshold ARCH models such as Gourieroux
and Monfort (1992); and switching ARCH and stochastic volatility models such as Cai
(1994), Hamilton and Susmel (1994), Gray (1996), Klaassen (1998) and So, Lam, and Li
(1998).
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several periods in which case the state becomes persistent. Thus, extremely
high levels of volatility are not expected to occur often, but periodically ex-
plosions in volatility may persist for some time. Note that this exibility
of our parameterization, which incorporates time-varying persistence, allows
that state to capture observations in the tail of the unconditional distribu-
tion of volatility (for example, due to news announcements) as well as more
sustained episodes of high volatility.

Our evidence of nonlinearity in realized volatility has several important
implications. Firstly, the nonlinear model provides superior out-of-sample
forecasts. By identifying periods of high volatility, forecasts during normal
periods can be held with more con�dence. Secondly, modeling large abrupt
changes in volatility will have important e�ects on derivative security pricing.
For example, Jorion (1988) �nds evidence of jumps in FX markets and shows
that they explain some of the mispricing in currency options. The time-
varying variance of volatility found in this paper is important for hedging
and for pricing derivatives for which the underlying is a volatility measure,
such as a volatility index. We utilize a pseudo trading exercise to show
that the volatility forecasts from the nonlinear model dominate those from
the linear model when the criterion is pro�ts associated with trading FX
straddle contracts.

This paper is organized as follows: Section 2 reviews the theoretical and
practical issues involved in measuring daily volatility. Data sources are de-
tailed in Section 3. The form of GARCH and stochastic volatility models
in terms of realized volatility is explained in Section 4 as well as the semi-
Markov nonlinear model. Details on the model estimates, including out-of-
sample evaluation, are found in Section 5. Section 6 provides a discussion of
the results and Section 7 concludes.

2 Volatility Measures

In this section, we introduce notation for instantaneous and integrated latent
volatilities, for daily realized volatilities, and for potential errors associated
with using realized volatility to measure integrated latent volatility. In par-
ticular, daily realized volatility is de�ned as the sum of intraday squared
returns. The latter are fully observable and provide a nonparametric esti-
mate of latent volatility over the same time interval. We briey discuss the
conditions for realized volatilities to be consistent and unbiased estimates
of the latent volatility associated with possible data generating processes
(DGPs).

2.1 Constructing Daily Volatility Measures

We label latent volatility as �2 and use (t) to denote instantaneous variables
and subscripts to denote discrete quantities. Let ~�2t be latent volatility for
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day t which has been aggregated over the interval (t; t+1) where a full 24 hour
day is represented by the time interval 1. To illustrate these concepts consider
the following simple di�usion process with no conditional mean dynamics,

dp(t) = �(t)dW (t) (2.1)

where p(t) is the instantaneous logarithm of price, dW (t) is a standard Brow-
nian process, and �(t) is a stochastic process independent of dW (t). For this
di�usion, latent volatility associated with day t is the integral of the instan-
taneous variances over the day,

~�2t =

Z t+1

t

�2(!)d!: (2.2)

This is an ex post measure of latent volatility associated with day t.
Merton (1980) showed that integrated volatility (2.2) can be approxi-

mated to an arbitrary precision using the sum of the intraday squared re-
turns. In our case, these nonparametric estimates of ~�2t are labelled �̂2t and
are computed as4

�̂2t =
Æ�1X
j=0

r2t+j=Æ; (2.3)

where rt+j=Æ = pt+j=Æ � pt+(j�1)=Æ de�nes continuously compounded returns,
sampled Æ times per day. Note that the subscript t indexes the day while
j indexes the time within day t (i.e. f(t; j)jt = 1; : : : ; T ; j = 0; : : : ; Æ � 1g).
For example, in our empirical application, the interval is 1 day and the price
process is sampled every 5 minutes in order to compute 5-minute returns.
This implies that Æ = 288. Andersen, Bollerslev, Diebold, and Labys (1999)
refer to �̂2t as daily realized volatility.

The quadratic variation of the di�usion process implies that Equation
(2.3) will provide a consistent estimate of latent volatility over day t since

plimÆ!1

Æ�1X
j=0

r2t+j=Æ = ~�2t : (2.4)

As the sampling frequency from a di�usion is increased, the sum of squared
returns converges to the integrated volatility over the �xed time interval.
Andersen, Bollerslev, Diebold, and Labys (1999) generalized this result to
the class of special (�nite mean) semimartingales. This class encompasses
processes used in standard arbitrage-free asset pricing applications, such as,
Ito di�usions, jump processes, and mixed jump di�usions.

4Andreou and Ghysels (2000) evaluate the impact of window length, data frequency,
weighting scheme, and estimation methods (block versus rolling sample) for the relative
eÆciency of estimates of integrated volatility associated with di�usions.
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This approach could also be applied to the case of a discrete high-frequency
price process. For example, consider a discrete-time DGP for intraday FX
returns,

rt+j=N = �t+j=Nzt+j=N ; zt+j=N � IID(0; 1) (2.5)

in which rt+j=N = pt+j=N � pt+(j�1)=N , pt is the log price, and N is the to-
tal number of price quotes in a day.5 The (2.5) speci�cation encompasses
discrete-time stochastic volatility as well as GARCH processes.

2.2 Measurement Error Issues

If it were possible to increase the sampling frequency of prices (Æ ! 1),
realized volatility would provide an error-free measure of latent volatility.
However, discrete price quotes and other institutional and behavioral features
of the trading process (such as, bid-ask bounce) make sampling at very high
frequencies impossible or impractical. In this paper, we explicitly account
for various sources of measurement error that might be associated with using
realized volatility as a measure for latent volatility over a day.

One source of measurement error could arise from discretization (Æ is �-
nite) since the true stochastic volatility process generates quotes at frequen-
cies higher than our 5-minute sampling frequency. Secondly, the price quotes
may be inuenced by market microstructure dynamics which can induce au-
tocorrelation in high-frequency FX returns.6 To deal with such sources of
measurement error, we de�ne �t as the di�erence between ~�2t (the maintained
latent volatility for day t) and its estimate �̂2t (daily realized volatility). That
is,

�̂2t = ~�2t + �t: (2.6)

Equation (2.6) makes it clear that we are not treating realized volatility as
an error-free measure of latent volatility.

As noted above, the nonparametric estimator �̂2t , given by (2.3), will
provide consistent estimates of latent volatility for a broad class of DGPs.
However, the accuracy of daily realized volatilities as measures of ex post
daily latent volatilities will depend on the maintained DGP and on the prop-
erties of �t. Since the di�usion maintained in (2.1) is driftless, �̂2t will be an
unbiased estimator for ~�2t , and the measurement error will be a martingale
di�erence sequence (Et�1�t = 0).7 Although unbiasedness will not hold in
the presence of a drift in the underlying DGP, �̂2t will still be a consistent
estimator of ~�2t .

5The ex post latent volatility of returns for day t associated with this discrete-quote
DGP is, ~�2t =

PN�1
j=0 �2t+j=N , and an estimate of ~�2t is (2.3) where Æ = N .

6Bai, Russell, and Tiao (1999) show that autocorrelation and non-normal innovations
can have important e�ects on measurement error and thus on the accuracy of the estimator.

7See Barndor�-Nielsen and Shephard (2000). Additional assumptions on the underlying
DGP may allow one to further characterize the distribution of �t.
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For example, consider the DGP (2.5) for which �t takes the form

�t = �̂2t � ~�2t =
N�1X
j=0

�2t+j=N (z
2
t+j=N � 1): (2.7)

Under the null of that DGP, zt+j=N � IID(0; 1) and is independent of �2t+j=N .

Therefore, although �t is heteroskedastic, it is mean zero and �̂2t will be an
unbiased estimator for ~�2t for this DGP.

Equation (2.6) links our volatility estimate �̂2t to the contemporaneous
measure of daily latent volatility ~�2t . However, these measures of volatility
are not always synonymous with conditional variance. One example is when
the conditional variance is de�ned to be measurable with respect to a prior
information set. An example of the latter is the popular GARCH speci�ca-
tion of conditional variance. To illustrate this case, we de�ne ~�2tjt�1 as the
GARCH conditional variance which is measurable with respect to informa-
tion at t� 1, consisting of past daily returns, so that

~�2t = ~�2tjt�1 + wt (2.8)

in which wt captures the di�erence between conditioning information associ-
ated with ~�2tjt�1 as opposed to ~�2t . Substituting (2.8) into (2.6) gives us,

�̂2t = ~�2tjt�1 + vt + �t = ~�2tjt�1 + ��t (2.9)

where ��t incorporates both contemporaneous measurement error and condi-
tioning information innovations.

3 Data Sources and Issues

Ten years of FX prices recorded every 5 minutes were obtained from Olsen
and Associates. The data are constructed from logarithmic middle-prices
(averages of log bid and ask quotes) for the DEM-USD exchange rate from
the interbank FX market for the period Monday, December 1, 1986, 00:00:00
GMT to Sunday, December 1, 1996, 00:00:00 GMT. These prices are inter-
polated to a 5-minute grid using the nearest quotes which bracket the grid
point. The dataset also includes a data-hole indicator variable designating
whether the quotes used for interpolation are more than 5 minutes away on
both sides of the grid point of the constructed quote. If this is the case,
the indicator variable takes the value 1, otherwise it is 0. Days with runs of
such indicators equal to one indicate data gaps due to a problem with the
recording or very slow activity in the FX market.

Currencies trade 24 hours per day, 7 days a week. This results in 1,052,064
5-minute prices for the 10-year sample in the Olsen and Associates dataset.
Using these prices we computed 1,052,063 continuously compounded 5-minute
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returns (expressed in USD terms) and matched those returns with time, date,
and day-of-the-week and holiday indicator variables.

In order to construct our measure of realized volatility at a daily fre-
quency, we need to de�ne the boundaries of a day. Following Bollerslev and
Domowitz (1993), we de�ne day t as the interval from 21:05 GMT the pre-
vious day to 21:00 GMT on day t. Based on the motivation summarized in
Section 2, the estimate for daily realized volatility is computed by summing
squares of the currency's 5-minute returns over the day, that is, using (2.3)
with Æ = 288.

Although it is possible to trade currencies at any time, there will clearly
be periods such as weekends (covering the period from 21:05:00 GMT Friday
to 21:00:00 GMT Sunday) and holidays, during which there will be very
low trading activity. Such periods will generate seasonal e�ects. Following
Andersen, Bollerslev, Diebold, and Labys (1999), we eliminated slow trading
days (December 24-26,31, January 1-2) associated with �xed holidays, as well
as those for the moving holidays Good Friday, Easter Monday, Memorial
Day, July Fourth, Labor Day, Thanksgiving and the day after. Secondly,
we calculated the sum of the indicator variable for data 'holes' over a day
and removed days in which the sum was greater than 144 (more than one
half of the day). In addition to weekends and the holidays mentioned above,
this resulted in the removal of an extra 18 days, almost all of which had
runs greater than 120 for the indicator value of 1. Finally, we eliminated
all of December 1986 due to frequent holidays and runs of the indicator
variable. In sum, deseasonalizing by removing days with abnormally low
trading activity resulted in 709,920 5-minute returns (2465 days) over the
period from January 6, 1987 to November 27, 1996.8

As reported in Table 1, there is autocorrelation in the raw 5-minute re-
turns (up to 4 lags), possibly due to the discrete nature of bid/ask quotes
and associated market microstructure dynamics. To conform to the high-
frequency DGPs in (2.1) or (2.5), and to ensure that �t de�ned in (2.6) is
a martingale di�erence sequence, we �ltered the raw 5-minute returns data
with an MA(4) including a constant.9 This �lter removes the autocorrela-
tions (see �ltered data in Table 1) and potential trends in the data.

Let �̂2t;raw denote realized volatility when all days are used and �̂2t de-
note realized volatility for deseasonalized data (abnormal trading days elim-
inated). Estimates of the autocorrelation, spectrum, and empirical distri-
bution for the two data series (�̂2t;raw and �̂2t ) of the USD-DEM are shown
in Figures 2-4. The spikes in the spectrum plot correspond to the seasonal
frequencies of 1 week and a half week.

8Andersen, Bollerslev, Diebold, and Labys (1999) used 2445 days over their sample
from December 1, 1986 to December 1, 1996.

9Andersen, Bollerslev, Diebold, and Ebens (2000) also use a linear �lter to remove serial
correlation in high-frequency equity returns. Some alternative approaches, including an
estimator used by French, Schwert, and Stambaugh (1987) that corrects for �rst-order
autocorrelation, are discussed in Bai, Russell, and Tiao (1999).
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Figure 1 displays time series plots of �̂2t and daily returns, r2t . This
�gure shows realized volatility to be a less variable series than squared daily
returns. Table 2 also shows that daily realized volatility computed from
intradaily squared returns is less noisy than traditional proxies for ex post
daily volatility. In particular, the range of �̂2t is 5:222 as compared to 12:658
for r2t and the standard deviation of �̂2t is 0:487 as compared to 1:010 for r2t .

4 Time-Series Models of Realized Volatility

In section 2 we discussed a nonparametric measure of ex post volatility which
estimates latent volatility over an interval such as a day. Using (2.6) and (2.9)
we show how popular daily volatility models can be represented in terms of
observable realized volatility.

4.1 Linear Time-Series Models

Given the decomposition of realized volatility into daily latent volatility plus
error, as speci�ed in (2.6), one can derive the functional form for the time-
series pattern of realized volatility implied by a particular DGP for latent
volatility. For example, consider an autoregressive (AR) discrete-time SV
speci�cation for the dynamics of daily latent volatility,10 that is,

~�2t = �+ �(~�2t�1 � �) + vt; (4.1)

where vt is stochastic and not measurable with respect to an information set
consisting of daily returns.

One might be tempted to replace daily latent volatility ~�2t with its non-
parametric estimator �̂2t and �t (4.1) using least squares. However, realized
volatility measures latent volatility with error. Ignoring potential measure-
ment error may cause an error-in-variables problem. For this reason, we
decompose realized volatility into daily latent volatility plus error, as dis-
cussed in section 2 and speci�ed in Equation (2.6). Using (2.6) to replace ~�2t
in (4.1) implies that

�̂2t = �+ �(�̂2t�1 � �)� ��t�1 + �t + vt: (4.2)

That is, the SV speci�cation implies an (approximate) ARMA(1,1) when
expressed in terms of realized volatility �̂2t , measurement error, and forecast
innovations.

As emphasized by Andersen, Bollerslev, Diebold, and Labys (1999), volatil-
ity dynamics may involve auxiliary state variables. In this case, optimal fore-
casts could utilize available information in addition to past realized volatil-
ity. One candidate conditioning variable would be the most recent daily

10Meddahi and Renault (2000) provide an AR speci�cation of SV that is closed under
temporal aggregation. See also Barndor�-Nielsen and Shephard (1998).
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innovation to volatility, r2t�1. For example, consider a GARCH(1,1) function
speci�ed as11

~�2tjt�1 = �+ �(~�2t�1jt�2 � �) + �r2t�1; (4.3)

in which the notation ~�2tjt�1 is used to emphasize that in the GARCH param-
eterization the conditional variance is measurable with respect to an infor-
mation set of past daily returns. In this case, using (2.9), we have

�̂2t = �+ �(�̂2t�1 � �) + �r2t�1 � ���t�1 + ��t (4.4)

which is an ARMA(1,1) for �̂2t , our measure of realized volatility, with an
added conditioning variable, r2t�1, from the agents' information set of returns.
We refer to this time-series speci�cation for daily realized volatility as an
ARMAX(1,1) model.

The ARMAX structure implied by the popular SV and GARCH(1,1)
models of latent volatility provides us with a benchmark to gauge the impor-
tance of the proposed nonlinear features discussed in the next section. The
simple SV and GARCH(1,1) parameterizations (4.1) and (4.3) have several
well-known shortcomings in characterizing time-series properties of volatil-
ity. In our context, improvements might alternatively be gained by retaining
the linear functions but allowing for more exible innovation distributions,
longer lags in the ARMAX or long memory.

4.2 A Nonlinear Model

The SV and GARCH(1,1) speci�cations are both linear in the parameters
conditional on realized volatility and past returns. A vast literature has
developed from the ARCH model of Engle (1982). Part of this literature in-
vestigates whether nonlinear e�ects are important in the conditional variance
function.

In this section we discuss a nonlinear alternative to the linear models.
Our model is a discrete mixture of distributions, which can approximate
arbitrary densities (see Gottschling, Haefke, and White (1999)). A discrete
mixture of distributions is capable of capturing the skewness and kurtosis
that we observe in the distribution of volatility (Table 2). Within this class
of models we consider a parsimonious hidden Markov model directed by
duration-dependent mixing.

The nonlinear speci�cation applied to realized volatility is a discrete-state
semi-Markov12 model. In this model the duration of a state can a�ect the

11Such functions have stochastic volatility di�usion limits. See, for example, Nelson
(1990) and Duan (1997). For discrete time DGPs, Drost and Nijman (1993) show that
weak-GARCH models are closed under temporal aggregation.

12In semi-Markov processes the times at which transitions occur are governed by a
separate probability distribution, see Howard (1971). Our duration-dependent Markov-
switching speci�cation is a variant of a semi-Markov process for which virtual transitions
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conditional moments as well as the transition matrix.13 Our model of realized
volatility builds on the results in Maheu and McCurdy (2000b) which inves-
tigate a model that captures volatility dynamics exclusively through discrete
changes in the level of volatility.14 Motivated by these �ndings and the avail-
ability of observable volatility in the form of realized volatility, we consider
a combination of smooth persistent changes in volatility through an ARMA
speci�cation as well as discrete jumps captured by regime switching. This
combination of dynamics provides a exible model which can capture non-
linear features in the conditional and unconditional distributions of realized
volatility. It can also capture non-normal innovation distributions.

Begin by assuming that realized volatility is governed by a discrete mix-
ture of distributions. The discrete mixing variable St 2 f1; 2g is unobserved
and depends only on St�1 and its duration Dt�1. Duration is de�ned as the
number of consecutive occurrences of a particular state. We record duration
up to and including � periods in the past. De�ne the duration of state St as

Dt = min(Dt�1I(St; St�1) + 1; �): (4.5)

I(St; St�1) = 1 if St = St�1 and otherwise 0. Durations above � are recorded
as having a duration of � .15 Therefore, if duration happens to be greater
than the memory of the process (which would be very unlikely) the transition
probabilities or any function of Dt would be constant after that point.

The transition probabilities are parameterized using the logistic function
so that

Pii(Dt�1) = P (St = ijSt�1 = i; Dt�1 = dt�1)

=
exp(1(i) + 2(i)dt�1)

1 + exp(1(i) + 2(i)dt�1)
i = 1; 2 (4.6)

where 1(1), 2(1) and 1(2), 2(2) are parameters associated with states 1
and 2 respectively. Pii(Dt�1) is the conditional probability of staying in state
i given that we have been in state i for dt�1 periods where i = 1; 2. The

(a move from a state to itself) and actual transitions (a move from state i to state j) are
directed by a duration function. The hazard function de�ned by the duration parameter-
ization implicitly characterizes the holding time (and waiting time) distributions.

13Other Markov-switching applications which built on Hamilton (1989) to address issues
of duration include Durland and McCurdy (1994), Lam (1997), Filardo and Gordon (1998),
Maheu and McCurdy (2000a) and Maheu and McCurdy (2000b). A Bayesian approach
to volatility modeling with duration-dependent mixing is presented in Kim and Nelson
(1998).

14Maheu and McCurdy (2000b) show that a duration-dependent Markov switching
(DDMS) model provides a better description of the dynamics of the conditional and un-
conditional distribution of FX returns compared to GARCH and Markov switching ARCH
models. Their results suggest that discrete changes in volatility are an important ingredi-
ent in the time-series dynamics of FX returns.

15While it is possible to estimate � , for example using a grid search, we set � = 25 which
is large enough to ensure that all the duration e�ects have been captured.
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probability of switching from state i to state j, given that we have been in
state i for dt�1 periods, is Pij(Dt�1) = 1� Pii(Dt�1); i 6= j; j = 1; 2.

The semi-Markov model of realized volatility (SM-ARMAX(1,1)) extends
the linear ARMAX speci�cation with regime switching in the conditional
mean and the conditional variance as,

�̂2t = �(St; Dt) + �(�̂2t�1 � �(St�1; Dt�1)) + �r2t�1 + �~�t�1 + �t(St)

�(St; Dt) = �(St) +  (St)Dt

~�t�1 = �̂2t�1 � Et�2�̂
2
t�1

�t(St) � N(0; �2(St)): (4.7)

In general, an ARMA(1,1) with regime switching is intractable due to a state
space that increases with the sample size.16 Our ARMA model augmented
with regime switching is an approximation to a true latent variable regime-
switching ARMA model. The approximation is due to the fact in that ~�t�1
is not a function of the unobserved state variables but represents the error
observed by the econometrician.17 By integrating out the dependence of
�t�1 on St�1 and Dt�1, ~�t�1 represents an estimate of the true (unobserved)
innovation �t�1(St�1).

The model in (4.7) nests the ARMAX(1,1), which was motivated by a
GARCH(1,1) formulation of latent volatility, and extends it to allow for state
dependent variance and regime switching in the conditional mean of realized
volatility.18 The conditional mean term �(St; Dt) is a function of St and its
duration Dt through the coeÆcients �(St), and  (St) respectively.

The earlier linear ARMAX(1,1) speci�cation is a parsimonious model that
imposes strong assumptions on volatility. For example, the unconditional
variance and persistence of volatility levels are both assumed to be constant.
Furthermore, that parameterization is not well suited to explaining or pre-
dicting discrete jumps in volatility levels. However, the SM-ARMAX(1,1)
is a nonlinear extension which allows the levels of volatility to change con-
tinuously and discretely over time, provides a exible structure governing
persistence of volatility levels through the transition probabilities and du-

16Billio, Monfort, and Robert (1999) use Bayesian simulation methods to deal with the
exploding state space in switching ARMA models.

17The accuracy of the approximation depends on the forecast precision for future states.
To illustrate, consider a simple two-state MS model yt = �(St) + et, and let p1;t�1 be the
inferred probability of state 1 given time t-1 information. Then if St = 1, ~et = yt�Et�1yt =
(�(1) � �(2))(1 � p1;t�1) + et. Therefore, the accuracy of ~et in measuring et depends on
how close the states are (j�(1) � �(2)j) and/or how close p1;t�1 is to 1. An analogous
example applies if St = 2. Therefore, models that predict well will provide good estimates
of the underlying innovations, that is, ~et will be close to et. In our more general case,
~�t�1 in (4.7) is an innovation with respect to the information set f�̂2t�2; :::; �̂

2
1g of the

econometrician, not with respect to an information set that includes St�1.
18This is a slight abuse in terminology since, in order to to nest the earlier linear spec-

i�cations, the conditional mean of realized volatility is also a function of �r2t�1 and the
MA(1) term.
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ration dependence, and allows for conditional heteroskedasticity in realized
volatility.

To discuss duration e�ects on realized volatility it is useful to de�ne the
hazard function. The hazard function is the conditional probability of a state
change given the state has achieved a duration d. In terms of the transition
probabilities the hazard function is,

Pij(Dt�1) =
1

1 + exp(1(i) + 2(i)dt�1)
; i = 1; 2: (4.8)

A decreasing hazard function is referred to as negative duration dependence
while an increasing hazard function is positive duration dependence. The
e�ect of duration on the hazard function is uniquely summarized by the
parameters 2(i) i = 1; 2. In particular, for state i, 2(i) < 0 implies
positive duration dependence, 2(i) = 0 implies no duration e�ect and 2(i) >
0 implies negative duration dependence. For example, if state 2 displays
negative duration dependence and the FX market persists in state 2, then
the probability of staying in state 2 increases.

Hamilton (1989) shows that inference regarding the latent variable St
can be constructed recursively. In a similar fashion, inference regarding both
St and Dt can be computed for the semi-Markov model. De�ne, f(�j�) as
the conditional density of the normal distribution, and �t as the time t
information set available to the econometrician. The �lter provides optimal
inference for the unobserved variables given time t information. For St = 1; 2
and 1 � Dt � � and using st and dt to denote realized values of St and Dt

we have,

P (St = st; Dt = dtj�t) =
f(ytjSt = st; Dt = dt;�t�1)P (St = st; Dt = dtj�t�1)

P (ytj�t�1)

where

P (St = st; Dt = dtj�t�1) =
X

st�1;dt�1

P (St = st; Dt = dtjSt�1 = st�1; Dt�1 = dt�1)

� P (St�1 = st�1; Dt�1 = dt�1j�t�1)

and,

P (ytj�t�1) =
X

st;st�1;dt�1

f(ytjSt = st; Dt = dt;�t�1)

� P (St = st; Dt = dtjSt�1 = st�1; Dt�1 = dt�1)

� P (St�1 = st�1; Dt�1 = dt�1j�t�1)

The �lter plays an important role in forecasts of current as well as future
levels of realized volatility. One step ahead forecasts from this model are,19

Et�̂
2
t+1 =

X
st+1;st;dt+1;dt

Et[�̂
2
t+1jSt+1 = st+1; St = st; Dt+1 = dt+1; Dt = dt]

� P (St+1 = st+1; St = st; Dt+1 = dt+1; Dt = dtj�t): (4.9)

19Since the regime switching in the conditional mean a�ects only the intercept and the
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5 Estimates

Table 3 presents unrestricted ARMA(1,1), ARMAX(1,1) and SM-ARMAX(1,1)
estimates for the in-sample observations 1-1800.20 Recall that these corre-
spond to SV, GARCH(1,1) and semi-Markov volatility models, respectively,
expressed in terms of realized volatility. A Ljung-Box (LB) statistic robust to
heteroskedasticity is reported for the residuals and a standard LB test for the
squared residuals. Results from a heteroskedastic-robust test for neglected
nonlinearity (NL) in the residuals from the linear models are also reported
in the table.21

On the basis of the likelihood, the ARMAX(1,1) speci�cation for realized
volatility suggests a marginal improvement in explaining realized volatility
compared to the ARMA(1,1) speci�cation. In an ideal setting we would like
to use our ARMAX estimates to back out parameter estimates of the SV
and GARCH models. However, this is not directly possible from Table 3
estimates for two reasons. First, the SV speci�cation of realized volatility
in equation 4.2 does not imply an exact ARMA model, and secondly the
GARCH parameterization in equation 4.4 puts restrictions on the ARMAX
parameters (� = ��). For example, estimates from an ARMAX(1,1) with
the restriction, � = �� imposed gave �̂ = :103 and �̂ = :831.22 However,
the unrestricted ARMAX estimates reported in Table 3 represent a more
exible parameterization of the time series dynamics of realized volatility.
We discuss this issue further in section 6 below.

The speci�cation tests for both linear ARMA models reported in Table 3
suggest conditional heteroskedasticity as well as the presence of nonlinear ef-
fects in the residuals (NL test). This motivates the SM-ARMAX(1,1) model
which is also reported in Table 3. According to the speci�cation tests this
model captures the conditional heteroskedasticity and shows a vast improve-
ment in the likelihood. One might expect that this improvement is due to the
relaxation of the assumption of a constant conditional variance of volatility
imposed in the ARMAX speci�cations. However, even with no state depen-
dence for the conditional variance of volatility, the loglikelihood is improved
from �938:770 to �486:031. That is, about one half of the increase in log-
likelihood for SM-ARMAX relative to ARMAX can be attributed to con-
ditional mean dynamics and the other half to dynamics of the conditional
variance of volatility. There are a number of nonlinear dynamics that the

memory of duration is truncated at � , multiperiod forecasts of �̂2t+i are a straightforward
generalization of the 1-period forecast. However, an assumed data generating process
for the high frequency returns is needed in order to forecast daily squared returns which
appear in (4.7). One possibility is to use (2.5) to derive the daily squared return to show

Etr
2
t+i = Et(

PN�1
j=0 rt+i+j=N )

2 = Et~�
2
t+i = Et�̂

2
t+i, which ensures a closed form solution

for multiperiod forecasts of the SM-ARMAX model.
20Observations 1801-2465 are saved for out-of-sample evaluation of the models.
21This is a heteroskedastic robust version of the Tsay (1986) test.
22On the other hand, latent volatility estimates using innovations to daily returns (in-

stead of realized volatility) give �̂ = :0497 and �̂ = :914.
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SM-ARMAX(1,1) uncovers in realized volatility. These issues are explored
further in Section 5.3.

5.1 Forecasts

Although the nonlinear model of realized volatility dominates the linear alter-
natives in-sample, these results may not extend out-of-sample. Out-of-sample
evaluation through 1-step-ahead forecasts are detailed in Tables 4 and 5. In
each case estimates for a particular model are �xed at the reported values in
Table 3.

Table 4 displays the estimates and R2 from a regression of realized volatil-
ity at time t on a constant and a model estimate based on time t� 1 infor-
mation. For all models the intercept and slope coeÆcient are individually
insigni�cant from 0 and 1 respectively (a suÆcient condition for unbiased
forecasts). However, based on R2 statistics, the ARMAX model shows a .03
increase (compared to ARMA) in explanatory power for one-step ahead re-
alized volatility, while the SM-ARMAX(1,1) shows a .042 increase. Squared
returns are another proxy, although a noisy one, of latent daily volatility.
The ~R2 in Table 4 is the R2 from a regression of daily squared returns on a
constant and a model forecast of realized volatility, This provides a check on
the results that use realized volatility as the forecast target. The apparent
reduction in forecasting power as measured by the ~R2 in this regression is
consistent with the results in Andersen and Bollerslev (1998).

As a comparison, a GARCH(1,1) model estimated from daily returns
data obtained an out-of-sample R2 = :384. This represents a .033 decrease
in explanatory power compared to the ARMA(1,1) model applied to realized
volatility estimates and a .075 decrease relative to the SM-ARMAX(1,1)
speci�cation of the latter. In other words, using realized volatility estimates
results in superior forecasts than those based on latent volatility estimates
derived from �tting a GARCH model to returns themselves.

Table 5 displays estimates from the out-of-sample regression of realized
volatility on 1-step-ahead forecasts from both the SM-ARMAX(1,1) and
ARMAX(1,1). These results suggest that the nonlinear model provides a
marginal improvement in forecasting power. The heteroskedastic t-statistic
on the SM-ARMAX(1,1) forecast is 2:09 while it is �:03 on the ARMAX(1,1)
forecast.

To further investigate the out-of-sample forecasting power of the ARMAX
and SM-ARMAX models we considered the following proportional loss (PL)
function,

PL =
1

T

TX
t=1

log

�
�̂2t

Et�1�̂2t

�
:

Unlike the R2 measure reported above, this loss function weights small and
large forecast errors equally. If this measure is positive (negative) it means
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the forecasting model on average underpredicts (overpredicts) future volatil-
ity. The perfect measure for this loss function is 0. As shown in Ta-
ble 4, the out-of-sample loss for the ARMAX was �:224, and for the SM-
ARMAX �:131. A similar ranking of the models is obtained from ~PL =
1
T

PT
t=1 log

�
r2t

Et�1�̂2t

�
which uses squared returns as the forecast target in-

stead of realized volatility. These results indicate that all models tend to
overpredict realized volatility (and squared returns), with the linear models
doing this to a greater degree. One potential explanation for this di�erence
is that linear ARMA models imply an exponential decay associated with
innovations to realized volatility; whereas the nonlinear SM-ARMAX speci-
�cation has the ability to make immediate abrupt adjustments in volatility
as a result of a new innovation.

5.2 A Pro�tability Assessment of Variance Forecasts

To augment the statistical evaluation in the last section, this section follows
Engle, Hong, Kane, and Noh (1993) by deriving a pro�tability measure of
the relative ranking of the alternative variance forecasts. In particular, we
use ex ante variance forecasts to price European-style put and call options on
a spot foreign currency position. These options are priced using the Black-
Scholes (BS) formula adapted to FX spot market positions (Garman and
Kohlhagen (1983)). The options are then combined into a straddle position
with one straddle price computed using the ARMAX volatility forecast and
an alternative straddle price computed using the the SM-ARMAX volatility
model.

A straddle is a natural choice to gauge the relative merits of our volatility
models as it is a bet on future volatility. In particular, a long straddle is the
simultaneous purchase of a call and a put option on the same currency. We
price call and put options which have the same maturity and are both at-
the-money (ATM). A short straddle is the simultaneous sale of a call and
put option on the same currency. The long straddle will become pro�table
if the realized volatility increases substantially whereas a short position will
be pro�table if the realized volatility is lower than the market expected.

The market consists of two investors. One investor is assigned the AR-
MAX volatility model to generate 1-period out-of-sample volatility forecasts
while the other investor uses the SM-ARMAX volatility model for the same
purpose. Each investor prices a straddle utilizing their own volatility fore-
cast but the same at-the-money strike prices, foreign and domestic interest
rates. A short time-to-expiration (one day) is used to better approximate
the constant volatility assumption in the Black-Scholes pricing formula. The
straddle is re-priced every day by each investor using updated 1-step ahead
volatility forecasts.

The market operates as follows. Each investor prices an ATM straddle
on one Deutsche Mark contract which is set at 62,500 Deutsche Marks (as is
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the case for European FX options traded on the Philadelphia stock market).
We assume that the investors are U.S. based. The call ct, and put price pt,
which make up a straddle are priced according to the following equations,

ct = Ste
�rf (T�t)N(d1)�Xte

�r(T�t)N(d2)

pt = Xte
�r(T�t)N(�d2)� Ste

�rf (T�t)N(�d1)
d1 =

log(St=Xt) + (r � rf + �2t =2)(T � t)

�t
p
T � t

d2 = d1 � �t
p
T � t

where N(�) is the cumulative distribution function for the standard normal
distribution, T � t is the annualized time to maturity, r and rf , are the an-
nualized domestic and foreign interest rates respectively, and the one period
ahead annualized variance forecast from a particular model is substituted for
�2t .

To make the trading market operational we assign one forecasting model
as the investor and another forecasting model as the market maker. The
investor initiates trades based on comparing his/her own straddle price to
that posted by the market maker. For example, if the investor's straddle
price is greater than the market maker's then the investor buys 1 straddle
from the market maker, otherwise the investor goes short and sells 1 straddle
to the market maker. After next period's spot price is realized payouts are
calculated. This is repeated every day for 664 out-of-sample periods.

There are several potential problems in interpreting the results from the
option market. First, the assumed pricing formula is misspeci�ed, and there-
fore pro�ts may be a reection of superior forecasts and/or pricing model
misspeci�cation. In our pseudo option market the investor and market maker
both price straddles using the same pricing formula { only volatility forecasts
di�er. Hence, having the forecast models ARMAX and SM-ARMAX trade
against each other should minimize the e�ects of pricing misspeci�cation and
instead reect the relative merits of the volatility forecasts.23

Table 6 shows two particular runs of our pseudo market with r = :04 and
rf = :05. The �rst run assigns the role of market maker to the SM-ARMAX
model and the second reverses roles so that the investor is the SM-ARMAX
model. In both cases, the nonlinear (SM-ARMAX) model makes money
against the ARMAX model. For example, the number of days with positive
returns is almost two to one in favor of the nonlinear model. Average daily
net gain for the nonlinear model is $32.90 (almost 15 percent of the average
price for one straddle contract) while the linear model had an average loss
of $22.20 per day. The standard errors in Table 6 show the average pro�t to
be signi�cantly di�erent than 0. We also explored several other simulations

23Note that a priori, there is no reason to think that the ARMAX or SM-ARMAX
are systematically pro�ting from the BS misspeci�cation since the volatility forecasting
parameters were estimated using realized volatility data independent of any options data
or options pricing formula.
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of this market with similar results. The results of this economic evaluation
of the alternative forecasts supports the statistical results presented in the
previous section. Using either criteria the nonlinear SM-ARMAX parame-
terization appears to provide superior variance forecasts.

5.3 Full-Sample Estimates

In this section we present and discuss the full-sample estimates of the semi-
Markov ARMA model. Estimates for the entire sample are found in Table 7.
Based on speci�cation tests we found it necessary to include a second MA
term for this sample to eliminate residual serial correlation. Figure 5 displays
the hazard function for states 1 and 2, and Figure 6 shows the conditional
mean of realized volatility as a function of duration.

The estimates provide evidence of regime switching. The test of no regime
switching in the conditional mean of realized volatility (�(1) = �(2);  (1) =
 (2) = 0) and also the test of no regime switching in the conditional vari-
ance of realized volatility (�(1) = �(2)) are both strongly rejected. Moreover,
duration is important in explaining within state changes in the conditional
mean. For instance, the t-statistic on  (2) is 3.11 and indicates the condi-
tional mean is increasing with the duration of state 2 (see Figure 6). The
duration of a state also signi�cantly a�ects the transition probabilities of
both states through 2(i); i = 1; 2.

State 1 of realized volatility is characterized by normal levels of realized
volatility (�(1; 1) = :246, �(1; 25) = :150) coupled with a low conditional
standard deviation (�(1) = :119). State 2 displays a large and increasing
level of realized volatility as a function of duration (�(2; 1) = :510, �(2; 25) =
1:854), as well as a high conditional standard deviation (�(2) = :746). The
unconditional probabilities for states 1 and 2 are .81 and .19 respectively.

The hazard function for both states is shown in Figure 5. Recall that this
is the probability of exiting a state as a function of duration. Both states
have a declining hazard function indicative of negative duration dependence.
This �gure suggests that the high variance in state 2 is not initially persis-
tent, and on average results in a switch to the lower variance state. However,
if realized volatility persists in state 2 for 3 or more periods then it becomes
persistent. Therefore, prolonged episodes of high variance in realized volatil-
ity, on average, lead to more of the same.

Finally, Figure 7 shows realized volatility with the in-sample �tted values
from the semi-Markov model, while Figure 8 plots the probability of the low
volatility state (state 1) based on the full-sample smoother for a particularly
volatile period in FX markets. Figure 8 indicates that the nonlinear model
accurately identi�es the sharp increases in the level and the volatility of
realized volatility.
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6 Discussion

The SM-ARMAX model is an example of a doubly stochastic process. In this
case the two sources of randomness are �t(St) conditional on the state, and
the latent state itself, (St; Dt). As such, uncertainty about �̂2t comes from
these two sources. Although the largest component of uncertainty comes from
the innovation variance, �2(St) conditional on St = 1 or 2, regime changes
and/or regime uncertainty about the conditional mean �(St; Dt) are also an
important component of the conditional variance of realized volatility. These
two sources of randomness play an important role in the con�dence we attach
to future forecasts of realized volatility.

There are important di�erences between the nonlinear model and the
linear ARMA models. Contrary to the evidence from the linear models in
Table 3, the semi-Markov model indicates that the standard deviation of the
innovations to realized volatility is about .13 most of the time24 and not .4 as
the ARMA(1,1) and ARMAX(1,1) estimates imply. Therefore, based on the
semi-Markov model, if we are very certain that next period will be normal
(i.e. state 1), then from a forecasting perspective we are much more con�dent
about the behavior of realized volatility next period compared to what the
linear models suggest. However, our estimates for the nonlinear model show
that 19% of the time realized volatility undergoes a large increase in its
conditional standard deviation to .792. This represents an increase of over
600% in the standard deviation.

It is natural to interpret state 2 as capturing periods characterized by high
volatility of FX rates. Switches between that state and the normal state will
involve discrete jumps in volatility. This is an important issue in derivative
asset pricing. Empirical evidence suggests that some form of discrete jumps
may be necessary to fully describe speculative returns (see Andersen, Ben-
zoni, and Lund (1999)). The usual assumption in continuous time models
is that a Poisson process describes the discrete jumps. This implies that
jumps are independent and not a�ected by the most recent information set.
However, our results suggest that dependence in the probability of discrete
jumps may be an important component of FX volatility dynamics.

Although we have presented out-of-sample forecasts for the various mod-
els using a particular sample period we also explored a few other sample
periods. In summary, we found that forecasting performance of the linear
ARMAX models varied greatly, depending on the proportion of extremely
high levels of realized volatility in the forecasting sample. However, the
semi-Markov model consistently produced good forecast results relative to
the linear models for di�erent out-of-sample periods. Nevertheless, for small
forecasting samples found at the end of our dataset both the ARMAX(1,1)
and the semi-Markov model had out-of-sample R2 in excess of .5.

2481% of the time realized volatility is in state 1 according to the unconditional proba-
bilities.
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Although several issues arise when discussing persistence, we can ask how
today's volatility a�ects tomorrow's volatility. As noted above, using real-
ized volatility and unrestricted ARMA or ARMAX parameterizations makes
it diÆcult to compare the coeÆcient estimates in Table 3 to the SV-motivated
approximate ARMA function in Equation 4.2 or the GARCH-motivated re-
stricted ARMAX function in Equation 4.4. However, estimates from an AR-
MAX(1,1) with the restriction, � = �� imposed gave �̂ + �̂ = :934.25 This
estimate is relatively close to what we would expect for daily return data.26

The unrestricted ARMAX estimates reported in Table 3 represent a more
exible model than the GARCH(1,1), and therefore � + � is not necessarily
a meaningful measure of persistence in latent daily volatility.

The results from the semi-Markov model indicate that the linear AR-
MAX(1,1) in realized volatility neglects several nonlinear features. First, our
evidence points to a time-varying intercept parameter. Second, our results
suggest that the stochastic process governing the time-varying parameters
shows dependence. Finally, we �nd evidence of conditional heteroskedas-
ticity for realized volatility. This study points to the usefulness of recent
research exploring the combination of GARCH or SV models with structural
changes or regime switching dynamics.

In this paper we have purposely studied levels of realized volatility to
build on the large GARCH (Palm (1996)) and SV (Bates (2000), and Cher-
nov, Gallant, Ghysels, and Tauchen (1999)) literature that investigates the
importance of nonlinearities and asymmetries in levels of volatility. How-
ever, transformations of realized volatility may be useful. For example, den-
sity plots in Andersen, Bollerslev, Diebold, and Labys (1999) show that the
unconditional distribution of log transforms of realized volatility is approxi-
mately normal. A starting point for such investigations in our context might
be to apply a Box-Cox transformation to our ARMAX speci�cation. In fact,
this transformation has been used in the GARCH literature (see Higgins and
Bera (1992)). The log transform is a special case of the Box-Cox model and
is used in EGARCH and many of the SV models. We did some preliminary
analysis using log transforms of realized volatility. In summary our main
results do not change. The NL test, reported in Table 3 for the ARMAX
parameterizations of volatility levels, also strongly rejects an ARMAX(1,1)
model of log volatility. We �nd evidence of regime switching, and the fore-
casting ranking of the models is preserved. Obviously the dynamics such
as persistence in the transition matrix change considerably. However, the
main point is that the nonlinear features we uncover in FX volatility are not
eliminated by the log transformation. Future work will investigate some of
these issues.

25Equation 4.3 can be rearranged to give, ~�2t = �(1��)+ (�+�)~�2t�1+�(r
2
t�1� ~�2t�1).

26Latent volatility estimates using innovations to daily returns (instead of realized

volatility) give �̂+ �̂ = :964 for this sample.
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7 Conclusion

This paper uses a nonparametric measure of daily volatility (realized volatil-
ity) that allows us to investigate the time-series features of latent volatility
and sidestep the choice of the innovation distribution driving returns. It is
important to note that we explicitly incorporate the fact that realized volatil-
ity will not be an error-free measure of ex post latent volatility. Specifying a
functional relationship between our direct estimate of volatility and the la-
tent DGP for daily volatility, allows the latter to be parameterized in terms of
realized volatility, other variables in the information set, and an error term.
In this framework, standard latent volatility models become variants of an
ARMAX time series model. Due to our maintained relationship between
realized volatility and latent volatility, any time-series characteristics found
using the former will also be true of the latter.

We begin by analyzing an ARMAX model and �nd evidence of nonlinear
structure for which we propose a doubly stochastic process with duration-
dependent mixing. Our nonlinear model uncovers several important features
of FX volatility. For example, we �nd evidence of time-varying persistence
in volatility. We also �nd that the conditional variance of volatility is time
varying. FX returns exhibit normal periods of low and relatively stable
volatility and other periods of high and uctuating volatility. The latter
state does not occur often but periodically can persist for a longer period of
time. The exibility of our parameterization, which captures both volatility
clustering and time-varying persistence, allows the high volatility state to
capture short-lived realizations in the tail of the unconditional distribution
of volatility (for example, due to announcements) as well as more sustained
periods of high variability in FX returns. These di�erent episodes of volatility
embody very di�erent levels of con�dence that can be attached to forecasts.

Our evidence of nonlinearity in realized volatility has important implica-
tions for empirical �nance including the precision of forecasts, hedging and
pricing of derivatives. This applies both to the e�ect of large abrupt changes
in the level of volatility on FX options and to the e�ect of the time-varying
variance of volatility for pricing derivatives for which the underlying is a
volatility measure such as a volatility index. A simple pseudo-trading ex-
ercise in which the volatility forecasts are used to price FX straddles shows
that the volatility forecasts generated by the nonlinear model dominate those
from the linear volatility model.
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Table 1: Autocorrelations of the 5 minute date

1 2 3 4 5

un�ltered
-.033

(.316e-02)
-.016

(.250e-02)
-.024

(.224e-02)
-.013

(.226e-02)
-.357e-02
(.223e-02)

�ltered
.373e-04
(.322e-02)

.248e-04
(.254e-02)

-.667e-04
(.224e-02)

-.126e-03
(.226e-02)

-.322e-02
(.224e-02)

This table reports the �rst 5 autocorrelations of the 5 minute quote data before and
after a MA(4) �lter was applied. Estimates are from GMM and heteroskedastic and
autocorrelation consistent standard errors appear in parenthesis.

Table 2: Descriptive Statistics: raw versus adjusted daily data

�̂2t;raw �̂2t rt r2t
Mean .374 .528 .009 .488
Stdev .464 .487 .699 1.010
Skewness 3.520 3.721 .010 5.391
Kurtosis 23.890 24.085 5.288 43.733
Min .000 .051 -3.558 .000
Max 5.245 5.222 3.254 12.658
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Table 3: Volatility Model Estimates, DEM-USD
ARMA(1,1) ARMA(1,1)-r2t�1 SM-ARMA(1,1)-r2t�1

St = 1 St = 2

�
.553
(.038)

.400
(.041)

�(St)
.299
(.036)

.560
(.052)

 (St)
-.004
(.002)

.045
(.020)

�
.902
(.021)

.861
(.024)

.757
(.027)

�
.041
(.007)

.058
(.007)

�
-.615
(.043)

-.613
(.042)

-.425
(.035)

�(St)
.410
(.007)

.408
(.007)

.132
(.005)

.797
(.039)

1(St)
1.744
(.178)

-.502
(.208)

2(St)
.035
(.016)

.181
(.053)

~Q(10)
15.131
[.127]

11.251
[.338]

14.092
[.169]

Q2(10)
52.772
[.000]

53.916
[.000]

6.524
[.769]

NL
54.600
[.000]

48.077
[.000]

lgl -948.282 -938.770 10.279
Standard errors appear in parenthesis and p-values in square brackets. The main-
tained model for the ARMA(1,1), and ARMA(1,1)-r2t�1 is,

�̂2t = �+ �(�̂2t�1 � �) + �r2t�1 + ��t�1 + �t; �t � iid(0; �2):

The SM-ARMA(1,1)-r2t�1 is,

�̂2t = �(St; Dt) + �(�̂2t�1 � �(St�1; Dt�1)) + �r2t�1 + �~�t�1 + �t(St)

�(St; Dt) = �(St) +  (St)Dt

~�t�1 = �̂2t�1 �Et�2�̂
2
t�1; �(St) � N(0; �2(St))

with state transition probabilities from equation (4.6) ~Q(10), is a heteroskedastic
robust version of the Ljung-Box statistic for serial correlation in the residuals with
10 lags, while Q2(10) is the standard Ljung-Box statistic on the squared residuals.
NL is a test for neglected nonlinearity in the residuals based on a heteroskedastic
robust Wald test of �2 = 0, in

�̂t = zt�1 + wt�2 + error

zt = [1; �̂t�1; : : : ; �̂t�p]; wt = [�̂2t�1; �̂t�1�̂t�2; : : : ; �̂
2
t�p]

which is a :5p(p + 1) degree of freedom test. The NL test sets p = 4. Data
observations are from 1 to 1800.
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Table 4: Out-of-Sample Forecast Results, DEM-USD
ARMA(1,1) ARMA(1,1)-r2t�1 SM-ARMA(1,1)-r2t�1

c0
-.069
(.046)

-.074
(.044)

-.050
(.042)

c1
1.094
(.110)

1.112
(.107)

1.156
(.109)

R2 .417 .446 .459
PL -.237 -.224 -.131

~R2 .039 .039 .041
~PL -1.828 -1.816 -1.722
The test regression is

�̂2t = c0 + c1Et�1�̂
2
t + error

where Et�1�̂
2
t is the particular model based 1 step-ahead fore-

cast. Model estimates are obtained using observation 1-1800, and
thereafter �xed. Out-of-sample observations are from 1801-2465.
Heteroskedastic consistent standard errors appear in parenthesis.
The proportional loss function is

PL =
1

T

TX
t=1

log

�
�̂2t

Et�1�̂
2
t

�
:

~R2 is the R2 from the test regression using daily squared returns,

r2t = c0 + c1Et�1�̂
2
t + error:

and

~PL =
1

T

TX
t=1

log

�
r2t

Et�1�̂
2
t

�
:
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Table 5: Forecast Comparisons, DEM-USD
c0 c1 c2 R2

-.049
(.041)

1.172
(.561)

-.016
(.522)

.460

The test regression is

�̂2t = c0 + c1E
1
t�1�̂

2
t + c2E

2
t�1�̂

2
t + error

where E1
t�1�̂

2
t is the 1 step-ahead forecast from the SM-

ARMA(1,1)-r2t�1 and E2
t�1�̂

2
t is the 1 step-ahead forecast from

the ARMA(1,1)-r2t�1. Out-of-sample observations are from 1801-
2465. Heteroskedastic consistent standard errors appear in paren-
thesis.

Table 6: Relative Pro�tability of Variance Forecasts
Investor Market Investor's Average Percentage of Days

Maker Daily Gain + Gain

1 ARMAX SM-ARMAX
-22.200
(7.106)

35%

2 SM-ARMAX ARMAX
32.902
(7.403)

67%

This table includes 2 runs of the pseudo straddle market. The investor is the
model listed in the left hand column and initiates trades against the market
maker. The domestic and foreign interest rates are �xed at r = :04 and rf =
:05, respectively. Heteroskedasticity and autocorrelation consistent standard
errors appear in parentheses. The total out-of-sample trading days is 664.
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Table 7: Full-Sample SM-ARMA(1,2)-r2t�1 Estimates, DEM-USD

SM-ARMA(1,2)-r2t�1
St = 1 St = 2

�(St)
.250
(.037)

.454
(.056)

 (St)
-.004

(.160e-2)
.056
(.018)

�
.784
(.030)

�
.057
(.005)

�1
-.427
(.033)

�2
-.056
(.017)

�(St)
.119
(.003)

.746
(.028)

1(St)
1.491
(.140)

-.495
(.182)

2(St)
.052
(.012)

.176
(.042)

~Q(10)
16.716
[.081]

Q2(10)
7.977
[.631]

lgl 147.161
The SM-ARMA(1,2)-r2t�1 is,

�̂2t = �(St; Dt) + �(�̂2t�1 � �(St�1; Dt�1)) + �r2t�1 + �1~�t�1 + �2~�t�2 + �t(St)

�(St; Dt) = �(St) +  (St)Dt

~�t�1 = �̂2t�1 �Et�2�̂
2
t�1

�(St) � N(0; �2(St))

with state transition probabilities from equation (4.6) ~Q(10), is a heteroskedas-
tic robust version of the Ljung-Box statistic for serial correlation in the residuals
with 10 lags, while Q2(10) is the standard Ljung-Box statistic on the squared
residuals.

25



Figure 1: Squared Returns and Realized Volatility, DEM-USD
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Figure 2: DEM-USD Sample Autocorrelations
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Figure 3: DEM-USD Spectrum Estimates
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Figure 4: DEM-USD Empirical Distribution Function

�̂2t�̂2t;raw

43.532.521.510.50-0.5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5: Hazard Function for SM-ARMA(1,2)-r2t�1
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Figure 6: Conditional Mean as a Function of Duration �(St) +  (St)Dt
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